Kemasu's picture
Training in progress epoch 1
60a8076
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_keras_callback
model-index:
- name: Kemasu/albert-base-v2-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Kemasu/albert-base-v2-finetuned-squad
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6529
- Train End Logits Accuracy: 0.8116
- Train Start Logits Accuracy: 0.7711
- Validation Loss: 0.8559
- Validation End Logits Accuracy: 0.7604
- Validation Start Logits Accuracy: 0.7262
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11078, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.9838 | 0.7333 | 0.6924 | 0.8735 | 0.7515 | 0.7178 | 0 |
| 0.6529 | 0.8116 | 0.7711 | 0.8559 | 0.7604 | 0.7262 | 1 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2