|
--- |
|
license: apache-2.0 |
|
base_model: albert/albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fine_tuned_model_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_model_2 |
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1547 |
|
- Accuracy: 0.9730 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 28 | 0.5030 | 0.9189 | |
|
| No log | 2.0 | 56 | 0.1776 | 0.9640 | |
|
| No log | 3.0 | 84 | 1.1016 | 0.2793 | |
|
| No log | 4.0 | 112 | 0.7159 | 0.8739 | |
|
| No log | 5.0 | 140 | 0.1969 | 0.9550 | |
|
| No log | 6.0 | 168 | 0.1550 | 0.9640 | |
|
| No log | 7.0 | 196 | 0.1547 | 0.9730 | |
|
| No log | 8.0 | 224 | 0.1794 | 0.9640 | |
|
| No log | 9.0 | 252 | 0.1822 | 0.9640 | |
|
| No log | 10.0 | 280 | 0.1845 | 0.9640 | |
|
| No log | 11.0 | 308 | 0.1834 | 0.9640 | |
|
| No log | 12.0 | 336 | 0.1827 | 0.9640 | |
|
| No log | 13.0 | 364 | 0.1694 | 0.9730 | |
|
| No log | 14.0 | 392 | 0.1714 | 0.9730 | |
|
| No log | 15.0 | 420 | 0.1737 | 0.9730 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|