sentence-transformers/static-retrieval-mrl-en-v1

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_gen_colbert_triplets dataset. It maps sentences from academic texts to a 768-dimensional dense vector space based on their rhetorical function (summarizing results, expressing limitations etc.) and can be used for functional textual similarity, limitations analysis, rhetorical function classification, clustering and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbed")
# Run inference
sentences = [
    'Surveys and interviews: Introducing excerpts from interview data',
    "Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
    'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9
cosine_accuracy@3 0.9452
cosine_accuracy@5 0.9642
cosine_accuracy@10 0.9853
cosine_precision@1 0.9
cosine_precision@3 0.3151
cosine_precision@5 0.1928
cosine_precision@10 0.0985
cosine_recall@1 0.9
cosine_recall@3 0.9452
cosine_recall@5 0.9642
cosine_recall@10 0.9853
cosine_ndcg@10 0.9415
cosine_mrr@10 0.9276
cosine_map@100 0.9284

Training Details

Training Dataset

sci_gen_colbert_triplets

  • Dataset: sci_gen_colbert_triplets at 44071bd
  • Size: 35,934 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 10.24 tokens
    • max: 23 tokens
    • min: 2 tokens
    • mean: 39.86 tokens
    • max: 80 tokens
    • min: 18 tokens
    • mean: 40.41 tokens
    • max: 88 tokens
  • Samples:
    query positive negative
    Previous research: highlighting negative outcomes Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers. This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.
    Synthesising sources: contrasting evidence or ideas Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001). Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.
    Previous research: Approaches taken Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988). The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

sci_gen_colbert_triplets

  • Dataset: sci_gen_colbert_triplets at 44071bd
  • Size: 4,492 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 10.23 tokens
    • max: 23 tokens
    • min: 18 tokens
    • mean: 39.83 tokens
    • max: 84 tokens
    • min: 8 tokens
    • mean: 39.89 tokens
    • max: 84 tokens
  • Samples:
    query positive negative
    Providing background information: reference to the purpose of the study This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains. Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.
    Providing background information: reference to the literature According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates. This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.
    General comments on the relevant literature Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties. Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss SciGen-Eval-Set_cosine_ndcg@10
0 0 - - 0.1744
0.1418 20 31.1056 29.9614 0.2010
0.2837 40 28.3636 25.9021 0.3552
0.4255 60 23.8421 21.4941 0.4817
0.5674 80 20.2484 19.1669 0.5793
0.7092 100 18.6804 18.0565 0.6219
0.8511 120 17.7705 17.3231 0.6564
0.9929 140 17.1951 16.8645 0.6723
1.1348 160 16.1046 16.3714 0.6918
1.2766 180 16.0491 16.0427 0.7063
1.4184 200 15.4859 15.6624 0.7240
1.5603 220 15.3239 15.4609 0.7341
1.7021 240 14.9202 15.1556 0.7414
1.8440 260 14.7176 14.8438 0.7584
1.9858 280 14.5036 14.5248 0.7718
2.1277 300 12.8219 14.4285 0.7860
2.2695 320 12.9107 14.1397 0.7927
2.4113 340 12.6728 13.8471 0.8092
2.5532 360 12.4097 13.6623 0.8160
2.6950 380 12.3039 13.4078 0.8264
2.8369 400 12.121 13.1426 0.8382
2.9787 420 12.0307 12.7989 0.8520
3.1206 440 10.4306 12.7893 0.8566
3.2624 460 10.5238 12.7036 0.8681
3.4043 480 10.3648 12.5674 0.8783
3.5461 500 10.4774 12.3069 0.8794
3.6879 520 10.4965 12.0965 0.8837
3.8298 540 10.4085 12.0368 0.8868
3.9716 560 10.2881 11.9063 0.8946
4.1135 580 9.1967 11.9930 0.8970
4.2553 600 9.3798 11.8936 0.9047
4.3972 620 9.3375 11.7678 0.9118
4.5390 640 9.2483 11.7572 0.9078
4.6809 660 9.3736 11.6011 0.9174
4.8227 680 9.3427 11.5383 0.9197
4.9645 700 9.3935 11.4293 0.9242
5.1064 720 8.5631 11.5119 0.9294
5.2482 740 8.6057 11.5173 0.9255
5.3901 760 8.6059 11.5421 0.9263
5.5319 780 8.8488 11.3879 0.9304
5.6738 800 8.7855 11.3523 0.9320
5.8156 820 8.7525 11.2572 0.9331
5.9574 840 8.8674 11.1829 0.9329
6.0993 860 8.0564 11.3401 0.9367
6.2411 880 8.1608 11.3323 0.9370
6.3830 900 8.2702 11.3146 0.9370
6.5248 920 8.3711 11.2561 0.9372
6.6667 940 8.421 11.2558 0.9354
6.8085 960 8.4125 11.1738 0.9384
6.9504 980 8.42 11.0996 0.9415

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
24
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KaiserML/RhetoriBERT

Finetuned
(16)
this model

Dataset used to train KaiserML/RhetoriBERT

Space using KaiserML/RhetoriBERT 1

Collection including KaiserML/RhetoriBERT

Evaluation results