RhetoriBert
Collection
Classifying sentences from scientific text by their rhetoric functions (summarizing results, expressing limitations etc.)
•
3 items
•
Updated
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_gen_colbert_triplets dataset. It maps sentences from academic texts to a 768-dimensional dense vector space based on their rhetorical function (summarizing results, expressing limitations etc.) and can be used for functional textual similarity, limitations analysis, rhetorical function classification, clustering and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbed")
# Run inference
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
SciGen-Eval-Set
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9 |
cosine_accuracy@3 | 0.9452 |
cosine_accuracy@5 | 0.9642 |
cosine_accuracy@10 | 0.9853 |
cosine_precision@1 | 0.9 |
cosine_precision@3 | 0.3151 |
cosine_precision@5 | 0.1928 |
cosine_precision@10 | 0.0985 |
cosine_recall@1 | 0.9 |
cosine_recall@3 | 0.9452 |
cosine_recall@5 | 0.9642 |
cosine_recall@10 | 0.9853 |
cosine_ndcg@10 | 0.9415 |
cosine_mrr@10 | 0.9276 |
cosine_map@100 | 0.9284 |
query
, positive
, and negative
query | positive | negative | |
---|---|---|---|
type | string | string | string |
details |
|
|
|
query | positive | negative |
---|---|---|
Previous research: highlighting negative outcomes |
Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers. |
This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics. |
Synthesising sources: contrasting evidence or ideas |
Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001). |
Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines. |
Previous research: Approaches taken |
Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988). |
The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis. |
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
query
, positive
, and negative
query | positive | negative | |
---|---|---|---|
type | string | string | string |
details |
|
|
|
query | positive | negative |
---|---|---|
Providing background information: reference to the purpose of the study |
This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains. |
Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest. |
Providing background information: reference to the literature |
According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates. |
This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis. |
General comments on the relevant literature |
Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties. |
Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes. |
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | - | 0.1744 |
0.1418 | 20 | 31.1056 | 29.9614 | 0.2010 |
0.2837 | 40 | 28.3636 | 25.9021 | 0.3552 |
0.4255 | 60 | 23.8421 | 21.4941 | 0.4817 |
0.5674 | 80 | 20.2484 | 19.1669 | 0.5793 |
0.7092 | 100 | 18.6804 | 18.0565 | 0.6219 |
0.8511 | 120 | 17.7705 | 17.3231 | 0.6564 |
0.9929 | 140 | 17.1951 | 16.8645 | 0.6723 |
1.1348 | 160 | 16.1046 | 16.3714 | 0.6918 |
1.2766 | 180 | 16.0491 | 16.0427 | 0.7063 |
1.4184 | 200 | 15.4859 | 15.6624 | 0.7240 |
1.5603 | 220 | 15.3239 | 15.4609 | 0.7341 |
1.7021 | 240 | 14.9202 | 15.1556 | 0.7414 |
1.8440 | 260 | 14.7176 | 14.8438 | 0.7584 |
1.9858 | 280 | 14.5036 | 14.5248 | 0.7718 |
2.1277 | 300 | 12.8219 | 14.4285 | 0.7860 |
2.2695 | 320 | 12.9107 | 14.1397 | 0.7927 |
2.4113 | 340 | 12.6728 | 13.8471 | 0.8092 |
2.5532 | 360 | 12.4097 | 13.6623 | 0.8160 |
2.6950 | 380 | 12.3039 | 13.4078 | 0.8264 |
2.8369 | 400 | 12.121 | 13.1426 | 0.8382 |
2.9787 | 420 | 12.0307 | 12.7989 | 0.8520 |
3.1206 | 440 | 10.4306 | 12.7893 | 0.8566 |
3.2624 | 460 | 10.5238 | 12.7036 | 0.8681 |
3.4043 | 480 | 10.3648 | 12.5674 | 0.8783 |
3.5461 | 500 | 10.4774 | 12.3069 | 0.8794 |
3.6879 | 520 | 10.4965 | 12.0965 | 0.8837 |
3.8298 | 540 | 10.4085 | 12.0368 | 0.8868 |
3.9716 | 560 | 10.2881 | 11.9063 | 0.8946 |
4.1135 | 580 | 9.1967 | 11.9930 | 0.8970 |
4.2553 | 600 | 9.3798 | 11.8936 | 0.9047 |
4.3972 | 620 | 9.3375 | 11.7678 | 0.9118 |
4.5390 | 640 | 9.2483 | 11.7572 | 0.9078 |
4.6809 | 660 | 9.3736 | 11.6011 | 0.9174 |
4.8227 | 680 | 9.3427 | 11.5383 | 0.9197 |
4.9645 | 700 | 9.3935 | 11.4293 | 0.9242 |
5.1064 | 720 | 8.5631 | 11.5119 | 0.9294 |
5.2482 | 740 | 8.6057 | 11.5173 | 0.9255 |
5.3901 | 760 | 8.6059 | 11.5421 | 0.9263 |
5.5319 | 780 | 8.8488 | 11.3879 | 0.9304 |
5.6738 | 800 | 8.7855 | 11.3523 | 0.9320 |
5.8156 | 820 | 8.7525 | 11.2572 | 0.9331 |
5.9574 | 840 | 8.8674 | 11.1829 | 0.9329 |
6.0993 | 860 | 8.0564 | 11.3401 | 0.9367 |
6.2411 | 880 | 8.1608 | 11.3323 | 0.9370 |
6.3830 | 900 | 8.2702 | 11.3146 | 0.9370 |
6.5248 | 920 | 8.3711 | 11.2561 | 0.9372 |
6.6667 | 940 | 8.421 | 11.2558 | 0.9354 |
6.8085 | 960 | 8.4125 | 11.1738 | 0.9384 |
6.9504 | 980 | 8.42 | 11.0996 | 0.9415 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
nomic-ai/nomic-embed-text-v1.5