swin-tiny-patch4-window7-224-finetuned-eurosat-newtrain
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0003
- Accuracy: 0.9998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1073 | 0.9985 | 343 | 0.0380 | 0.9891 |
0.0667 | 2.0 | 687 | 0.0187 | 0.9948 |
0.0486 | 2.9985 | 1030 | 0.0135 | 0.9944 |
0.0598 | 4.0 | 1374 | 0.0118 | 0.9952 |
0.0376 | 4.9985 | 1717 | 0.0083 | 0.9962 |
0.0191 | 6.0 | 2061 | 0.0058 | 0.9972 |
0.0265 | 6.9985 | 2404 | 0.0072 | 0.9980 |
0.0306 | 8.0 | 2748 | 0.0076 | 0.9982 |
0.0222 | 8.9985 | 3091 | 0.0053 | 0.9972 |
0.0196 | 10.0 | 3435 | 0.0063 | 0.9978 |
0.0086 | 10.9985 | 3778 | 0.0053 | 0.9984 |
0.0047 | 12.0 | 4122 | 0.0039 | 0.9988 |
0.0187 | 12.9985 | 4465 | 0.0076 | 0.9976 |
0.0169 | 14.0 | 4809 | 0.0018 | 0.9994 |
0.0068 | 14.9985 | 5152 | 0.0015 | 0.9996 |
0.0182 | 16.0 | 5496 | 0.0022 | 0.9992 |
0.0174 | 16.9985 | 5839 | 0.0031 | 0.9988 |
0.0174 | 18.0 | 6183 | 0.0017 | 0.9994 |
0.017 | 18.9985 | 6526 | 0.0007 | 0.9998 |
0.0097 | 20.0 | 6870 | 0.0018 | 0.9998 |
0.0074 | 20.9985 | 7213 | 0.0005 | 0.9998 |
0.0074 | 22.0 | 7557 | 0.0003 | 0.9998 |
0.0037 | 22.9985 | 7900 | 0.0008 | 0.9998 |
0.011 | 24.0 | 8244 | 0.0009 | 0.9996 |
0.0094 | 24.9985 | 8587 | 0.0009 | 0.9996 |
0.01 | 26.0 | 8931 | 0.0011 | 0.9996 |
0.007 | 26.9985 | 9274 | 0.0005 | 0.9998 |
0.0098 | 28.0 | 9618 | 0.0004 | 0.9998 |
0.0053 | 28.9985 | 9961 | 0.0005 | 0.9998 |
0.0031 | 29.9563 | 10290 | 0.0003 | 0.9998 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0
- Datasets 2.17.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Evaluation results
- Accuracy on imagefoldervalidation set self-reported1.000