swin-tiny-patch4-window7-224-finetuned-eurosat-newtrain

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Accuracy: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1073 0.9985 343 0.0380 0.9891
0.0667 2.0 687 0.0187 0.9948
0.0486 2.9985 1030 0.0135 0.9944
0.0598 4.0 1374 0.0118 0.9952
0.0376 4.9985 1717 0.0083 0.9962
0.0191 6.0 2061 0.0058 0.9972
0.0265 6.9985 2404 0.0072 0.9980
0.0306 8.0 2748 0.0076 0.9982
0.0222 8.9985 3091 0.0053 0.9972
0.0196 10.0 3435 0.0063 0.9978
0.0086 10.9985 3778 0.0053 0.9984
0.0047 12.0 4122 0.0039 0.9988
0.0187 12.9985 4465 0.0076 0.9976
0.0169 14.0 4809 0.0018 0.9994
0.0068 14.9985 5152 0.0015 0.9996
0.0182 16.0 5496 0.0022 0.9992
0.0174 16.9985 5839 0.0031 0.9988
0.0174 18.0 6183 0.0017 0.9994
0.017 18.9985 6526 0.0007 0.9998
0.0097 20.0 6870 0.0018 0.9998
0.0074 20.9985 7213 0.0005 0.9998
0.0074 22.0 7557 0.0003 0.9998
0.0037 22.9985 7900 0.0008 0.9998
0.011 24.0 8244 0.0009 0.9996
0.0094 24.9985 8587 0.0009 0.9996
0.01 26.0 8931 0.0011 0.9996
0.007 26.9985 9274 0.0005 0.9998
0.0098 28.0 9618 0.0004 0.9998
0.0053 28.9985 9961 0.0005 0.9998
0.0031 29.9563 10290 0.0003 0.9998

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0
  • Datasets 2.17.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Evaluation results