KaiQ's picture
Model save
f3edcc9 verified
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9972527472527473
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat-finetuned-eurosat
This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0058
- Accuracy: 0.9973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.0587 | 0.9992 | 307 | 0.0136 | 0.9959 |
| 0.0348 | 1.9984 | 614 | 0.0077 | 0.9968 |
| 0.0168 | 2.9976 | 921 | 0.0058 | 0.9973 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0
- Datasets 2.17.1
- Tokenizers 0.19.1