Kabatubare's picture
Update README.md
a3960d3
|
raw
history blame
1.81 kB
---
title: Medical3000
tags:
- healthcare
- NLP
- dialogues
- LLM
- fine-tuned
license: unknown
datasets:
- Kabatubare/medical-guanaco-3000
---
# Medical3000 Model Card
This is a model card for Medical_3000, a fine-tuned version of Llama-2-7B, specifically aimed at medical dialogues.
## Model Details
### Base Model
- **Name**: Llama-2-7B
### Fine-tuned Model
- **Name**: Yo!Medical3000
- **Fine-tuned on**: Kabatubare/medical-guanaco-3000
- **Description**: This model is fine-tuned to specialize in medical dialogues and healthcare applications.
### Architecture and Training Parameters
#### Architecture
- **LoRA Attention Dimension**: 64
- **LoRA Alpha Parameter**: 16
- **LoRA Dropout**: 0.1
- **Precision**: 4-bit (bitsandbytes)
- **Quantization Type**: nf4
#### Training Parameters
- **Epochs**: 3
- **Batch Size**: 4
- **Gradient Accumulation Steps**: 1
- **Max Gradient Norm**: 0.3
- **Learning Rate**: 3e-4
- **Weight Decay**: 0.001
- **Optimizer**: paged_adamw_32bit
- **LR Scheduler**: cosine
- **Warmup Ratio**: 0.03
- **Logging Steps**: 25
## Datasets
### Base Model Dataset
- **Name**: (Name of the dataset used for the base model)
- **Description**: (A brief description of this dataset and its characteristics)
### Fine-tuning Dataset
- **Name**: Kabatubare/medical-guanaco-3000
- **Description**: This is a reduced and balanced dataset curated from a larger medical dialogue dataset. It aims to cover a broad range of medical topics and is suitable for training healthcare chatbots and conducting medical NLP research.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Yo!Medical3000")
model = AutoModelForCausalLM.from_pretrained("Yo!Medical3000")
# Use the model for inference