KB-Whisper Large (Beta)
Preliminary checkpoint of the National Library of Sweden's new Whisper models for Swedish. This version is for testing only, it has completed its first stage of continued pre-training. We will be doing additional post-training to reduce hallucations before releasing the final version of the model.
Usage
import torch
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "KBLab/kb-whisper-large-beta"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache"
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
generate_kwargs = {"task": "transcribe", "language": "sv"}
# Add return_timestamps=True for output with timestamps
res = pipe("audio.mp3",
chunk_length_s=30,
generate_kwargs={"task": "transcribe", "language": "sv"})
- Downloads last month
- 123
Unable to determine this model's library. Check the
docs
.