Joy28's picture
Model save
bb21d33
|
raw
history blame
5.09 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-subset
    results: []

videomae-base-finetuned-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8930
  • Accuracy: 0.6296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 6660

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6074 0.02 112 1.5690 0.3687
1.6001 1.02 224 1.5783 0.3041
1.4193 2.02 336 1.4874 0.3825
1.398 3.02 448 1.0197 0.6406
1.2217 4.02 560 1.3386 0.3917
1.2577 5.02 672 1.2196 0.5392
1.0121 6.02 784 1.2319 0.4793
1.2485 7.02 896 0.8230 0.7512
1.025 8.02 1008 0.8023 0.6866
1.2952 9.02 1120 0.9130 0.6037
0.9499 10.02 1232 1.0621 0.6037
0.8805 11.02 1344 0.8713 0.7051
1.2066 12.02 1456 0.9364 0.5853
0.9358 13.02 1568 0.9107 0.5853
0.9043 14.02 1680 0.9147 0.6359
0.8383 15.02 1792 0.9451 0.6359
0.7482 16.02 1904 0.8765 0.6221
0.9547 17.02 2016 0.7998 0.7650
0.7028 18.02 2128 0.9257 0.6406
0.8659 19.02 2240 1.0655 0.5853
0.5591 20.02 2352 1.2794 0.5760
0.8963 21.02 2464 1.0049 0.6959
0.9221 22.02 2576 1.1113 0.6083
0.7154 23.02 2688 0.9371 0.6406
0.8795 24.02 2800 0.6838 0.7235
0.631 25.02 2912 1.2093 0.6129
1.0489 26.02 3024 1.4720 0.5484
0.5881 27.02 3136 1.1905 0.6313
0.7919 28.02 3248 1.1292 0.5760
0.9158 29.02 3360 1.0214 0.6359
0.8319 30.02 3472 1.2862 0.6682
0.6775 31.02 3584 1.0971 0.6406
0.7191 32.02 3696 1.0264 0.6498
0.7662 33.02 3808 1.0589 0.6406
0.7313 34.02 3920 1.5076 0.5622
0.7539 35.02 4032 1.2265 0.5899
0.571 36.02 4144 1.1598 0.6267
0.3404 37.02 4256 1.0307 0.6359
0.5553 38.02 4368 0.8180 0.7235
0.8499 39.02 4480 1.0074 0.6498
0.5036 40.02 4592 1.1160 0.6313
0.814 41.02 4704 0.9032 0.6959
0.7293 42.02 4816 0.9331 0.7281
0.4402 43.02 4928 1.4190 0.5668
0.4625 44.02 5040 1.0268 0.7005
0.2266 45.02 5152 1.2808 0.6406
0.7424 46.02 5264 1.1821 0.6498
0.4852 47.02 5376 1.2434 0.6590
0.523 48.02 5488 1.2123 0.6267
0.8344 49.02 5600 1.1889 0.6636
0.6648 50.02 5712 1.2328 0.6406
0.6929 51.02 5824 1.3269 0.6129
0.4253 52.02 5936 1.1885 0.6820
0.7003 53.02 6048 1.1522 0.7005
0.4105 54.02 6160 1.0037 0.7373
0.5206 55.02 6272 1.0913 0.7189
0.7129 56.02 6384 1.1083 0.6866
0.4772 57.02 6496 1.1276 0.7143
0.4822 58.02 6608 1.0920 0.7235
0.6307 59.01 6660 1.0987 0.7189

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0