Joy28's picture
Model save
6266041
|
raw
history blame
5.09 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-subset
    results: []

videomae-base-finetuned-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0747
  • Accuracy: 0.6991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 7020

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9225 0.02 118 0.7363 0.7419
0.8357 1.02 236 0.9119 0.7005
0.474 2.02 354 0.9698 0.6820
0.7899 3.02 472 1.1351 0.6774
0.9015 4.02 590 1.3823 0.4977
0.7402 5.02 708 0.8661 0.6959
0.6343 6.02 826 0.6689 0.7005
0.7427 7.02 944 0.9109 0.6728
0.5898 8.02 1062 1.0127 0.5945
0.6258 9.02 1180 0.7131 0.7235
0.9957 10.02 1298 0.9507 0.6728
0.401 11.02 1416 0.6259 0.7189
0.5422 12.02 1534 0.9453 0.6774
0.6852 13.02 1652 0.8649 0.7005
0.8469 14.02 1770 0.9379 0.6912
0.8492 15.02 1888 0.9003 0.6452
0.7633 16.02 2006 0.7601 0.7235
0.6063 17.02 2124 0.6181 0.7788
0.6436 18.02 2242 0.9445 0.6313
0.8931 19.02 2360 0.8515 0.7281
0.8599 20.02 2478 1.0786 0.6359
0.5183 21.02 2596 0.9481 0.6866
0.7982 22.02 2714 0.8364 0.7235
1.0003 23.02 2832 0.7811 0.7327
0.6666 24.02 2950 0.7552 0.7465
0.8527 25.02 3068 0.8201 0.7189
0.4678 26.02 3186 1.0260 0.6959
0.7354 27.02 3304 0.8520 0.6866
1.1097 28.02 3422 0.9239 0.7327
0.6264 29.02 3540 0.6894 0.7558
0.3348 30.02 3658 0.6230 0.8065
0.5548 31.02 3776 0.6431 0.8203
0.4242 32.02 3894 0.8081 0.7051
0.5805 33.02 4012 0.5598 0.8203
0.7064 34.02 4130 0.7341 0.7926
0.2534 35.02 4248 0.6685 0.7834
0.7578 36.02 4366 0.7592 0.7604
0.5822 37.02 4484 0.9472 0.7281
0.2939 38.02 4602 0.8888 0.7281
0.4795 39.02 4720 1.0768 0.6636
0.4038 40.02 4838 0.6452 0.8065
0.8347 41.02 4956 0.7040 0.7926
0.4113 42.02 5074 0.8012 0.7373
0.3681 43.02 5192 0.7622 0.7880
1.0092 44.02 5310 0.7932 0.7880
0.321 45.02 5428 0.9069 0.7373
0.399 46.02 5546 0.6439 0.8111
0.3699 47.02 5664 0.7740 0.7696
0.4297 48.02 5782 0.6811 0.8249
0.2783 49.02 5900 0.5868 0.8525
0.4946 50.02 6018 0.6732 0.7926
0.3058 51.02 6136 0.5511 0.8341
0.1286 52.02 6254 0.5877 0.8295
0.2013 53.02 6372 0.6508 0.8157
0.2027 54.02 6490 0.6630 0.8157
0.6267 55.02 6608 0.7373 0.8065
0.4561 56.02 6726 0.7383 0.8018
0.7002 57.02 6844 0.7073 0.8111
0.1823 58.02 6962 0.6871 0.8203
0.2439 59.01 7020 0.6901 0.8203

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0