videomae-base-finetuned-subset-200epochs
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7635
- Accuracy: 0.7407
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6058 | 0.01 | 56 | 0.7442 | 0.7880 |
0.4908 | 1.01 | 112 | 0.7775 | 0.7558 |
0.5326 | 2.01 | 168 | 0.7973 | 0.7419 |
0.4768 | 3.01 | 224 | 0.8451 | 0.7281 |
0.4243 | 4.01 | 280 | 0.9361 | 0.6728 |
0.6921 | 5.01 | 336 | 0.8979 | 0.7097 |
0.3182 | 6.01 | 392 | 0.8852 | 0.7235 |
0.6085 | 7.01 | 448 | 0.9224 | 0.7097 |
0.4067 | 8.01 | 504 | 0.9631 | 0.6682 |
0.47 | 9.01 | 560 | 0.9193 | 0.7465 |
0.5058 | 10.01 | 616 | 0.8967 | 0.7650 |
0.4187 | 11.01 | 672 | 0.7403 | 0.7834 |
0.6033 | 12.01 | 728 | 1.0005 | 0.6221 |
0.5032 | 13.01 | 784 | 1.1420 | 0.5899 |
0.5967 | 14.01 | 840 | 1.2590 | 0.5484 |
0.3103 | 15.01 | 896 | 0.9723 | 0.6544 |
0.4201 | 16.01 | 952 | 1.1665 | 0.6406 |
0.6246 | 17.01 | 1008 | 1.2497 | 0.4977 |
0.6306 | 18.01 | 1064 | 1.3829 | 0.5668 |
0.4179 | 19.01 | 1120 | 1.0787 | 0.5806 |
0.5468 | 20.01 | 1176 | 1.1144 | 0.5714 |
0.4166 | 21.01 | 1232 | 0.7674 | 0.6912 |
0.3844 | 22.01 | 1288 | 0.9260 | 0.6959 |
0.5138 | 23.01 | 1344 | 0.9093 | 0.7097 |
0.792 | 24.01 | 1400 | 0.7327 | 0.7465 |
0.5944 | 25.01 | 1456 | 0.8933 | 0.7650 |
0.4855 | 26.01 | 1512 | 0.9830 | 0.6636 |
0.6896 | 27.01 | 1568 | 0.7896 | 0.6590 |
0.3617 | 28.01 | 1624 | 0.8900 | 0.6544 |
0.6362 | 29.01 | 1680 | 1.0237 | 0.6912 |
0.6475 | 30.01 | 1736 | 1.1399 | 0.6037 |
0.5088 | 31.01 | 1792 | 0.7190 | 0.7742 |
0.7271 | 32.01 | 1848 | 0.9492 | 0.6359 |
0.3171 | 33.01 | 1904 | 0.9431 | 0.7281 |
0.5847 | 34.01 | 1960 | 0.7997 | 0.7235 |
0.4703 | 35.01 | 2016 | 0.9506 | 0.7051 |
0.4995 | 36.01 | 2072 | 1.0830 | 0.7005 |
0.5682 | 37.01 | 2128 | 1.0100 | 0.7005 |
0.6424 | 38.01 | 2184 | 0.9587 | 0.6452 |
0.5897 | 39.01 | 2240 | 0.8807 | 0.7097 |
0.5222 | 40.01 | 2296 | 1.1219 | 0.6682 |
0.5239 | 41.01 | 2352 | 1.0848 | 0.6406 |
0.5957 | 42.01 | 2408 | 0.9640 | 0.6866 |
0.5279 | 43.01 | 2464 | 1.0291 | 0.5853 |
0.3545 | 44.01 | 2520 | 0.8908 | 0.6636 |
0.6066 | 45.01 | 2576 | 1.2505 | 0.6406 |
0.3658 | 46.01 | 2632 | 0.8362 | 0.6866 |
0.5454 | 47.01 | 2688 | 1.3975 | 0.5622 |
0.5956 | 48.01 | 2744 | 0.8236 | 0.6590 |
0.4107 | 49.01 | 2800 | 1.2610 | 0.6267 |
0.462 | 50.01 | 2856 | 1.2553 | 0.6406 |
0.4837 | 51.01 | 2912 | 1.0389 | 0.6359 |
0.621 | 52.01 | 2968 | 0.8281 | 0.7235 |
0.4293 | 53.01 | 3024 | 1.0426 | 0.6267 |
0.4255 | 54.01 | 3080 | 1.2942 | 0.5806 |
0.5607 | 55.01 | 3136 | 1.1234 | 0.6498 |
0.3104 | 56.01 | 3192 | 1.0643 | 0.6590 |
0.3335 | 57.01 | 3248 | 1.2160 | 0.6590 |
0.4232 | 58.01 | 3304 | 1.3532 | 0.5806 |
0.6238 | 59.01 | 3360 | 0.9208 | 0.7005 |
0.369 | 60.01 | 3416 | 1.2186 | 0.5530 |
0.3874 | 61.01 | 3472 | 1.1746 | 0.6452 |
0.3421 | 62.01 | 3528 | 1.2017 | 0.5945 |
0.4243 | 63.01 | 3584 | 1.0288 | 0.6728 |
0.2806 | 64.01 | 3640 | 0.8483 | 0.7419 |
0.5357 | 65.01 | 3696 | 1.0890 | 0.6359 |
0.5155 | 66.01 | 3752 | 1.1885 | 0.6359 |
0.4367 | 67.01 | 3808 | 1.0738 | 0.6820 |
0.48 | 68.01 | 3864 | 1.0894 | 0.6866 |
0.4703 | 69.01 | 3920 | 1.2252 | 0.6498 |
0.4531 | 70.01 | 3976 | 1.0584 | 0.6498 |
0.2898 | 71.01 | 4032 | 1.7486 | 0.5576 |
0.3684 | 72.01 | 4088 | 1.0524 | 0.6406 |
0.2752 | 73.01 | 4144 | 1.2744 | 0.6728 |
0.3092 | 74.01 | 4200 | 1.3918 | 0.5806 |
0.3507 | 75.01 | 4256 | 1.4599 | 0.6544 |
0.4722 | 76.01 | 4312 | 1.0549 | 0.7143 |
0.4059 | 77.01 | 4368 | 1.2727 | 0.6728 |
0.2734 | 78.01 | 4424 | 1.1258 | 0.6959 |
0.4168 | 79.01 | 4480 | 0.9788 | 0.7189 |
0.4456 | 80.01 | 4536 | 1.4757 | 0.6544 |
0.4519 | 81.01 | 4592 | 1.2796 | 0.6820 |
0.5283 | 82.01 | 4648 | 1.2542 | 0.7051 |
0.4738 | 83.01 | 4704 | 1.2781 | 0.6083 |
0.2128 | 84.01 | 4760 | 1.0077 | 0.6866 |
0.3262 | 85.01 | 4816 | 1.0287 | 0.6820 |
0.3631 | 86.01 | 4872 | 1.3574 | 0.6544 |
0.4085 | 87.01 | 4928 | 1.1976 | 0.7235 |
0.3582 | 88.01 | 4984 | 1.4126 | 0.6544 |
0.3564 | 89.01 | 5040 | 1.3488 | 0.6406 |
0.4207 | 90.01 | 5096 | 1.0565 | 0.7005 |
0.4307 | 91.01 | 5152 | 0.9833 | 0.7281 |
0.3863 | 92.01 | 5208 | 0.9340 | 0.6912 |
0.2949 | 93.01 | 5264 | 0.9835 | 0.7143 |
0.2957 | 94.01 | 5320 | 1.1397 | 0.7235 |
0.3767 | 95.01 | 5376 | 1.4135 | 0.6221 |
0.4949 | 96.01 | 5432 | 1.0483 | 0.7189 |
0.3058 | 97.01 | 5488 | 1.8241 | 0.5530 |
0.3406 | 98.01 | 5544 | 1.7386 | 0.5760 |
0.2319 | 99.01 | 5600 | 1.4739 | 0.6175 |
0.5261 | 100.01 | 5656 | 1.0822 | 0.7143 |
0.4181 | 101.01 | 5712 | 1.2876 | 0.6728 |
0.243 | 102.01 | 5768 | 1.0783 | 0.7235 |
0.2603 | 103.01 | 5824 | 1.4557 | 0.6129 |
0.4892 | 104.01 | 5880 | 1.2557 | 0.6912 |
0.3073 | 105.01 | 5936 | 1.3899 | 0.5991 |
0.3601 | 106.01 | 5992 | 1.2048 | 0.6820 |
0.4371 | 107.01 | 6048 | 1.3645 | 0.6866 |
0.5712 | 108.01 | 6104 | 1.2281 | 0.6636 |
0.3697 | 109.01 | 6160 | 1.4402 | 0.6544 |
0.2978 | 110.01 | 6216 | 1.3769 | 0.6912 |
0.303 | 111.01 | 6272 | 1.3096 | 0.6959 |
0.4606 | 112.01 | 6328 | 1.2236 | 0.7005 |
0.2554 | 113.01 | 6384 | 1.2662 | 0.6959 |
0.3033 | 114.01 | 6440 | 1.2476 | 0.6406 |
0.3025 | 115.01 | 6496 | 1.0474 | 0.7143 |
0.3513 | 116.01 | 6552 | 1.4692 | 0.6452 |
0.4205 | 117.01 | 6608 | 1.2675 | 0.6912 |
0.3898 | 118.01 | 6664 | 1.4018 | 0.6590 |
0.2184 | 119.01 | 6720 | 1.2402 | 0.6959 |
0.319 | 120.01 | 6776 | 1.0747 | 0.7097 |
0.2455 | 121.01 | 6832 | 1.3515 | 0.7051 |
0.2138 | 122.01 | 6888 | 1.5175 | 0.6682 |
0.3805 | 123.01 | 6944 | 1.4817 | 0.6820 |
0.3942 | 124.01 | 7000 | 1.5235 | 0.6221 |
0.2207 | 125.01 | 7056 | 1.6295 | 0.5945 |
0.2217 | 126.01 | 7112 | 1.3348 | 0.6912 |
0.3173 | 127.01 | 7168 | 1.3566 | 0.7097 |
0.4952 | 128.01 | 7224 | 1.2188 | 0.7327 |
0.3238 | 129.01 | 7280 | 1.2574 | 0.7143 |
0.1525 | 130.01 | 7336 | 1.5508 | 0.6313 |
0.2518 | 131.01 | 7392 | 1.3058 | 0.6912 |
0.4523 | 132.01 | 7448 | 1.7539 | 0.6313 |
0.3732 | 133.01 | 7504 | 1.4478 | 0.6820 |
0.2432 | 134.01 | 7560 | 1.3595 | 0.6912 |
0.2798 | 135.01 | 7616 | 1.5007 | 0.6866 |
0.3436 | 136.01 | 7672 | 1.3162 | 0.7465 |
0.3033 | 137.01 | 7728 | 1.3700 | 0.7051 |
0.3457 | 138.01 | 7784 | 1.1052 | 0.7465 |
0.1381 | 139.01 | 7840 | 1.5786 | 0.6959 |
0.3067 | 140.01 | 7896 | 1.5155 | 0.6912 |
0.269 | 141.01 | 7952 | 1.2751 | 0.7512 |
0.2646 | 142.01 | 8008 | 1.6017 | 0.6774 |
0.3933 | 143.01 | 8064 | 1.4294 | 0.7005 |
0.6315 | 144.01 | 8120 | 1.3814 | 0.6866 |
0.2814 | 145.01 | 8176 | 1.1689 | 0.7512 |
0.2749 | 146.01 | 8232 | 1.3208 | 0.7005 |
0.3966 | 147.01 | 8288 | 1.2817 | 0.7189 |
0.1787 | 148.01 | 8344 | 1.4568 | 0.7189 |
0.3006 | 149.01 | 8400 | 1.3312 | 0.7143 |
0.2871 | 150.01 | 8456 | 1.5808 | 0.6452 |
0.2018 | 151.01 | 8512 | 1.6682 | 0.6267 |
0.2698 | 152.01 | 8568 | 1.4281 | 0.6590 |
0.162 | 153.01 | 8624 | 1.4369 | 0.7051 |
0.3961 | 154.01 | 8680 | 1.3771 | 0.7143 |
0.4034 | 155.01 | 8736 | 1.5444 | 0.6452 |
0.2462 | 156.01 | 8792 | 1.4677 | 0.6728 |
0.2564 | 157.01 | 8848 | 1.6085 | 0.6590 |
0.2905 | 158.01 | 8904 | 1.3037 | 0.6912 |
0.2762 | 159.01 | 8960 | 1.3974 | 0.7051 |
0.1604 | 160.01 | 9016 | 1.5176 | 0.6959 |
0.2399 | 161.01 | 9072 | 1.4504 | 0.7143 |
0.3398 | 162.01 | 9128 | 1.4675 | 0.6728 |
0.2495 | 163.01 | 9184 | 1.3757 | 0.7005 |
0.3076 | 164.01 | 9240 | 1.3699 | 0.7051 |
0.2491 | 165.01 | 9296 | 1.4333 | 0.7005 |
0.1666 | 166.01 | 9352 | 1.6465 | 0.6313 |
0.1871 | 167.01 | 9408 | 1.6614 | 0.6544 |
0.2169 | 168.01 | 9464 | 1.8141 | 0.6175 |
0.3918 | 169.01 | 9520 | 1.3402 | 0.7097 |
0.2697 | 170.01 | 9576 | 1.4295 | 0.6774 |
0.2261 | 171.01 | 9632 | 1.5952 | 0.6452 |
0.1894 | 172.01 | 9688 | 1.5468 | 0.6590 |
0.1714 | 173.01 | 9744 | 1.4434 | 0.6636 |
0.3137 | 174.01 | 9800 | 1.5525 | 0.6313 |
0.267 | 175.01 | 9856 | 1.6447 | 0.6452 |
0.0797 | 176.01 | 9912 | 1.5593 | 0.6682 |
0.2698 | 177.01 | 9968 | 1.3952 | 0.7005 |
0.1364 | 178.01 | 10024 | 1.6720 | 0.6498 |
0.2342 | 179.01 | 10080 | 1.6315 | 0.6682 |
0.1909 | 180.01 | 10136 | 1.5374 | 0.7051 |
0.2234 | 181.01 | 10192 | 1.5861 | 0.7097 |
0.3425 | 182.01 | 10248 | 1.5664 | 0.6912 |
0.4092 | 183.01 | 10304 | 1.6135 | 0.6774 |
0.2427 | 184.01 | 10360 | 1.5366 | 0.6866 |
0.3751 | 185.01 | 10416 | 1.5561 | 0.6959 |
0.1831 | 186.01 | 10472 | 1.6049 | 0.7005 |
0.2207 | 187.01 | 10528 | 1.6072 | 0.6959 |
0.1096 | 188.01 | 10584 | 1.5016 | 0.7097 |
0.2417 | 189.01 | 10640 | 1.5027 | 0.7097 |
0.2974 | 190.01 | 10696 | 1.4897 | 0.7097 |
0.2296 | 191.01 | 10752 | 1.4927 | 0.7235 |
0.3323 | 192.01 | 10808 | 1.4947 | 0.7235 |
0.3002 | 193.01 | 10864 | 1.5225 | 0.7143 |
0.23 | 194.01 | 10920 | 1.4965 | 0.7189 |
0.3147 | 195.01 | 10976 | 1.5123 | 0.7051 |
0.1344 | 196.01 | 11032 | 1.5192 | 0.7051 |
0.1843 | 197.01 | 11088 | 1.5235 | 0.7097 |
0.1902 | 198.0 | 11100 | 1.5238 | 0.7097 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.13.1
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Joy28/videomae-base-finetuned-subset-200epochs
Base model
MCG-NJU/videomae-base