Edit model card

model_broadclass_onSet2

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5931
  • 0 Precision: 1.0
  • 0 Recall: 0.9615
  • 0 F1-score: 0.9804
  • 0 Support: 26
  • 1 Precision: 0.9730
  • 1 Recall: 0.9231
  • 1 F1-score: 0.9474
  • 1 Support: 39
  • 2 Precision: 1.0
  • 2 Recall: 1.0
  • 2 F1-score: 1.0
  • 2 Support: 19
  • 3 Precision: 0.8125
  • 3 Recall: 1.0
  • 3 F1-score: 0.8966
  • 3 Support: 13
  • Accuracy: 0.9588
  • Macro avg Precision: 0.9464
  • Macro avg Recall: 0.9712
  • Macro avg F1-score: 0.9561
  • Macro avg Support: 97
  • Weighted avg Precision: 0.9640
  • Weighted avg Recall: 0.9588
  • Weighted avg F1-score: 0.9597
  • Weighted avg Support: 97
  • Wer: 0.6924
  • Mtrix: [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support 2 Precision 2 Recall 2 F1-score 2 Support 3 Precision 3 Recall 3 F1-score 3 Support Accuracy Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Wer Mtrix
2.3566 4.16 100 2.1836 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
2.2923 8.33 200 2.1159 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.9868 12.49 300 1.9923 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.7313 16.65 400 1.6081 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.6688 20.82 500 1.5971 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5888 24.98 600 1.6098 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5986 29.16 700 1.6984 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5437 33.33 800 1.4933 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.1358 37.49 900 1.1118 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
0.983 41.65 1000 1.0538 0.3171 1.0 0.4815 26 1.0 0.0256 0.05 39 1.0 0.3158 0.4800 19 0.875 0.5385 0.6667 13 0.4124 0.7980 0.4700 0.4195 97 0.8002 0.4124 0.3325 97 0.9732 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 37, 1, 0, 1], [2, 13, 0, 6, 0], [3, 6, 0, 0, 7]]
0.96 45.82 1100 0.9324 0.4561 1.0 0.6265 26 1.0 0.3846 0.5556 39 1.0 0.6316 0.7742 19 1.0 1.0 1.0 13 0.6804 0.8640 0.7540 0.7391 97 0.8542 0.6804 0.6770 97 0.9510 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 24, 15, 0, 0], [2, 7, 0, 12, 0], [3, 0, 0, 0, 13]]
0.9569 49.98 1200 0.9106 0.52 1.0 0.6842 26 1.0 0.6410 0.7813 39 1.0 0.6316 0.7742 19 1.0 0.7692 0.8696 13 0.7526 0.88 0.7605 0.7773 97 0.8713 0.7526 0.7657 97 0.9343 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 14, 25, 0, 0], [2, 7, 0, 12, 0], [3, 3, 0, 0, 10]]
0.943 54.16 1300 0.9142 0.7879 1.0 0.8814 26 1.0 0.8205 0.9014 39 1.0 0.9474 0.9730 19 0.9286 1.0 0.9630 13 0.9175 0.9291 0.9420 0.9297 97 0.9336 0.9175 0.9183 97 0.9242 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 6, 32, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]
0.9177 58.33 1400 0.9201 0.7879 1.0 0.8814 26 1.0 0.7692 0.8696 39 1.0 1.0 1.0 19 0.8667 1.0 0.9286 13 0.9072 0.9136 0.9423 0.9199 97 0.9253 0.9072 0.9062 97 0.9197 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 7, 30, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.873 62.49 1500 0.8556 0.8387 1.0 0.9123 26 1.0 0.8718 0.9315 39 1.0 0.9474 0.9730 19 0.9286 1.0 0.9630 13 0.9381 0.9418 0.9548 0.9449 97 0.9472 0.9381 0.9387 97 0.9293 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 4, 34, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]
0.798 66.65 1600 0.8133 0.8966 1.0 0.9455 26 1.0 0.8974 0.9459 39 1.0 1.0 1.0 19 0.9286 1.0 0.9630 13 0.9588 0.9563 0.9744 0.9636 97 0.9627 0.9588 0.9587 97 0.9071 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 3, 35, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.7299 70.82 1700 0.7332 1.0 0.9615 0.9804 26 0.9744 0.9744 0.9744 39 1.0 1.0 1.0 19 0.9286 1.0 0.9630 13 0.9794 0.9757 0.9840 0.9794 97 0.9801 0.9794 0.9795 97 0.8636 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 38, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.6432 74.98 1800 0.6808 1.0 0.9615 0.9804 26 0.9730 0.9231 0.9474 39 1.0 1.0 1.0 19 0.8125 1.0 0.8966 13 0.9588 0.9464 0.9712 0.9561 97 0.9640 0.9588 0.9597 97 0.7758 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.6067 79.16 1900 0.5931 1.0 0.9615 0.9804 26 0.9730 0.9231 0.9474 39 1.0 1.0 1.0 19 0.8125 1.0 0.8966 13 0.9588 0.9464 0.9712 0.9561 97 0.9640 0.9588 0.9597 97 0.6924 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.