Files changed (1) hide show
  1. README.md +126 -11
README.md CHANGED
@@ -1,17 +1,132 @@
1
  ---
2
  license: mit
3
  widget:
4
- - text: >
5
- <|system|>
6
-
7
- You are a helpful assistant</s>
8
-
9
- <|user|>
10
-
11
- What is your name? Tell me about yourself.</s>
12
-
13
- <|assistant|>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
  I cut my TinyLlama 1.1B cinder v 2 down from 22 layers to 14. At 14 there was no coherent text but there were emerging ideas of a response. 1000 steps on step-by-step dataset.
16
  6000 on Reason-with-cinder. The loss was still over 1 and the learning rate was still over 4. This model needs significat training. I am putting it up as a base model that
17
- needs work. If you continue training please let me know on the tinyllama discord, I have some interesting plans for this model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  widget:
4
+ - text: '<|system|>
5
+
6
+ You are a helpful assistant</s>
7
+
8
+ <|user|>
9
+
10
+ What is your name? Tell me about yourself.</s>
11
+
12
+ <|assistant|>'
13
+ model-index:
14
+ - name: tinyllama-730M-test
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ name: Text Generation
19
+ dataset:
20
+ name: AI2 Reasoning Challenge (25-Shot)
21
+ type: ai2_arc
22
+ config: ARC-Challenge
23
+ split: test
24
+ args:
25
+ num_few_shot: 25
26
+ metrics:
27
+ - type: acc_norm
28
+ value: 25.09
29
+ name: normalized accuracy
30
+ source:
31
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
32
+ name: Open LLM Leaderboard
33
+ - task:
34
+ type: text-generation
35
+ name: Text Generation
36
+ dataset:
37
+ name: HellaSwag (10-Shot)
38
+ type: hellaswag
39
+ split: validation
40
+ args:
41
+ num_few_shot: 10
42
+ metrics:
43
+ - type: acc_norm
44
+ value: 33.82
45
+ name: normalized accuracy
46
+ source:
47
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
48
+ name: Open LLM Leaderboard
49
+ - task:
50
+ type: text-generation
51
+ name: Text Generation
52
+ dataset:
53
+ name: MMLU (5-Shot)
54
+ type: cais/mmlu
55
+ config: all
56
+ split: test
57
+ args:
58
+ num_few_shot: 5
59
+ metrics:
60
+ - type: acc
61
+ value: 24.43
62
+ name: accuracy
63
+ source:
64
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
65
+ name: Open LLM Leaderboard
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: TruthfulQA (0-shot)
71
+ type: truthful_qa
72
+ config: multiple_choice
73
+ split: validation
74
+ args:
75
+ num_few_shot: 0
76
+ metrics:
77
+ - type: mc2
78
+ value: 42.9
79
+ source:
80
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
81
+ name: Open LLM Leaderboard
82
+ - task:
83
+ type: text-generation
84
+ name: Text Generation
85
+ dataset:
86
+ name: Winogrande (5-shot)
87
+ type: winogrande
88
+ config: winogrande_xl
89
+ split: validation
90
+ args:
91
+ num_few_shot: 5
92
+ metrics:
93
+ - type: acc
94
+ value: 51.07
95
+ name: accuracy
96
+ source:
97
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
98
+ name: Open LLM Leaderboard
99
+ - task:
100
+ type: text-generation
101
+ name: Text Generation
102
+ dataset:
103
+ name: GSM8k (5-shot)
104
+ type: gsm8k
105
+ config: main
106
+ split: test
107
+ args:
108
+ num_few_shot: 5
109
+ metrics:
110
+ - type: acc
111
+ value: 0.0
112
+ name: accuracy
113
+ source:
114
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
115
+ name: Open LLM Leaderboard
116
  ---
117
  I cut my TinyLlama 1.1B cinder v 2 down from 22 layers to 14. At 14 there was no coherent text but there were emerging ideas of a response. 1000 steps on step-by-step dataset.
118
  6000 on Reason-with-cinder. The loss was still over 1 and the learning rate was still over 4. This model needs significat training. I am putting it up as a base model that
119
+ needs work. If you continue training please let me know on the tinyllama discord, I have some interesting plans for this model.
120
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
121
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__tinyllama-730M-test)
122
+
123
+ | Metric |Value|
124
+ |---------------------------------|----:|
125
+ |Avg. |29.55|
126
+ |AI2 Reasoning Challenge (25-Shot)|25.09|
127
+ |HellaSwag (10-Shot) |33.82|
128
+ |MMLU (5-Shot) |24.43|
129
+ |TruthfulQA (0-shot) |42.90|
130
+ |Winogrande (5-shot) |51.07|
131
+ |GSM8k (5-shot) | 0.00|
132
+