Josephgflowers's picture
Adding Evaluation Results (#1)
4eeafda verified
metadata
license: mit
model-index:
  - name: Tinyllama-1.3B-Cinder-Reason-Test-2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 32.76
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 57.92
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 25.42
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 37.26
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 2.81
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-1.3B-Cinder-Reason-Test-2
          name: Open LLM Leaderboard

1.3B test of two Cinder models merged layers 1-22 and 18-22, trained on math and step by step reasoning. Model Overview Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration. It is built on the TinyLlama 1.1B parameter model and trained on a unique combination of datasets. Testing on Reason-with-cinder dataset.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 36.83
AI2 Reasoning Challenge (25-Shot) 32.76
HellaSwag (10-Shot) 57.92
MMLU (5-Shot) 25.42
TruthfulQA (0-shot) 37.26
Winogrande (5-shot) 64.80
GSM8k (5-shot) 2.81