File size: 3,871 Bytes
c001272
 
869fe62
 
51d1934
 
 
9fac416
51d1934
c001272
 
 
 
 
 
 
 
869fe62
c001272
 
 
 
 
 
 
869fe62
c001272
869fe62
c001272
 
869fe62
c001272
 
869fe62
c001272
 
869fe62
c001272
 
 
 
 
 
 
869fe62
c001272
 
 
869fe62
 
 
 
 
c001272
 
 
 
 
51d1934
c001272
51d1934
c001272
 
51d1934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c001272
 
 
 
 
 
 
869fe62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c001272
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
tags:
- generated_from_trainer
language: en
widget:
- text: "My name is Scott and I live in Columbus."
- text: "My name is Scott and I am calling from Buffalo, NY. I would like to file a complain with United Airlines."
- text: "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-large-uncased-finetuned-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.9504719600222099
    - name: Recall
      type: recall
      value: 0.9574896520863632
    - name: F1
      type: f1
      value: 0.9539679001337494
    - name: Accuracy
      type: accuracy
      value: 0.9885618059637473
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-uncased-finetuned-ner

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0778
- Precision: 0.9505
- Recall: 0.9575
- F1: 0.9540
- Accuracy: 0.9886

## Model description

More information needed

#### Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. 


#### How to use

You can use this model with Transformers *pipeline* for NER.

```python
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Scott and I live in Ohio"
ner_results = nlp(example)
print(ner_results)
```


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1997        | 1.0   | 878  | 0.0576          | 0.9316    | 0.9257 | 0.9286 | 0.9837   |
| 0.04          | 2.0   | 1756 | 0.0490          | 0.9400    | 0.9513 | 0.9456 | 0.9870   |
| 0.0199        | 3.0   | 2634 | 0.0557          | 0.9436    | 0.9540 | 0.9488 | 0.9879   |
| 0.0112        | 4.0   | 3512 | 0.0602          | 0.9443    | 0.9569 | 0.9506 | 0.9881   |
| 0.0068        | 5.0   | 4390 | 0.0631          | 0.9451    | 0.9589 | 0.9520 | 0.9882   |
| 0.0044        | 6.0   | 5268 | 0.0638          | 0.9510    | 0.9567 | 0.9538 | 0.9885   |
| 0.003         | 7.0   | 6146 | 0.0722          | 0.9495    | 0.9560 | 0.9527 | 0.9885   |
| 0.0016        | 8.0   | 7024 | 0.0762          | 0.9491    | 0.9595 | 0.9543 | 0.9887   |
| 0.0018        | 9.0   | 7902 | 0.0769          | 0.9496    | 0.9542 | 0.9519 | 0.9883   |
| 0.0009        | 10.0  | 8780 | 0.0778          | 0.9505    | 0.9575 | 0.9540 | 0.9886   |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0