Jorge Lopez Grisman commited on
Commit
51d1934
1 Parent(s): 869fe62

Update README.md

Browse files

Updating read with limitations paragraph and adding custom examples.

Files changed (1) hide show
  1. README.md +21 -4
README.md CHANGED
@@ -2,6 +2,10 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
 
 
5
  datasets:
6
  - conll2003
7
  metrics:
@@ -51,13 +55,26 @@ It achieves the following results on the evaluation set:
51
 
52
  More information needed
53
 
54
- ## Intended uses & limitations
55
 
56
- More information needed
57
 
58
- ## Training and evaluation data
59
 
60
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ## Training procedure
63
 
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ language: en
6
+ widget:
7
+ - text: "My name is Scott and I live in Columbus."
8
+ - text: "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."
9
  datasets:
10
  - conll2003
11
  metrics:
 
55
 
56
  More information needed
57
 
58
+ #### Limitations and bias
59
 
60
+ This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
61
 
 
62
 
63
+ #### How to use
64
+
65
+ You can use this model with Transformers *pipeline* for NER.
66
+
67
+ ```python
68
+ from transformers import pipeline
69
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
70
+ tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
71
+ model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
72
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
73
+ example = "My name is Scott and I live in Ohio"
74
+ ner_results = nlp(example)
75
+ print(ner_results)
76
+ ```
77
+
78
 
79
  ## Training procedure
80