Jorge Lopez Grisman
update read me with widget.
65b3b51
|
raw
history blame
1.62 kB
metadata
language: en
widget:
  - text: I got a rash from taking acetaminophen
tags:
  - sagemaker
  - bert-base-uncased
  - text classification
license: apache-2.0
datasets:
  - adecorpusv2
model-index:
  - name: BERT-ade_corpus
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ade_corpus_v2Ade_corpus_v2_classification
          type: ade_corpus
        metrics:
          - name: Validation Accuracy
            type: accuracy
            value: 92.98
          - name: Validation F1
            type: f1
            value: 82.73

bert-base-uncased

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

  • Problem type: Text Classification(adverse drug effects detection).

Hyperparameters

{
    "do_eval": true,
    "do_train": true,
    "fp16": true,
    "load_best_model_at_end": true,
    "model_name": "bert-base-uncased",
    "num_train_epochs": 10,
    "per_device_eval_batch_size": 16,
    "per_device_train_batch_size": 16,
    "learning_rate":5e-5

}

Validation Metrics

key value
eval_accuracy 0.9298021697511167
eval_auc 0.8902672664394546
eval_f1 0.827315541601256
eval_loss 0.17835010588169098
eval_recall 0.8234375
eval_precision 0.831230283911672

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I got a rash from taking acetaminophen"}' https://api-inference.huggingface.co/models/Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2

"""