
- Install yolov5:
pip install yolov5==7.0.5
- Set image
wget -O 'image.jpg' 'https://images.unsplash.com/photo-1556767576-cf0a4a80e5b8?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NXx8c3VwZXJtYXJrZXQlMjBzaGVsdmVzfGVufDB8fDB8fHww&w=1000&q=80'
- Load model and perform prediction:
import yolov5
# load model
model = yolov5.load('Jonathancasjar/Retail_Shelves')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
# set an image
img = '/content/image.jpg'
# perform inference
results = model(img, size=640)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
- Downloads last month
- 61
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.