Edit model card

roberta-base-ca-finetuned-cyberbullying-catalan

This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan.

It achieves the following results on the evaluation set:

  • Loss: 0.1508
  • Accuracy: 0.9665

Training and evaluation data

I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at roberta-base-bne-finetuned-cyberbullying-spanish

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Model in action ๐Ÿš€

Fast usage with pipelines:

from transformers import pipeline

model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan"
bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)

bullying_analysis(
    "Des que et vaig veure m'en vaig enamorar de tu."
    )
    
# Output:
[{'label': 'Not_bullying', 'score': 0.9996786117553711}]

bullying_analysis(
    "Ets tan lletja que et donaven de menjar per sota la porta."
    )
    
# Output:
[{'label': 'Bullying', 'score': 0.9927878975868225}]
    

Open In Colab

Framework versions

  • Transformers 4.10.3
  • Pytorch 1.9.0+cu102
  • Datasets 1.12.1
  • Tokenizers 0.10.3

Citation

@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
}

Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.

Created by Jonatan Luna | LinkedIn

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan 2