roberta-base-ca-finetuned-catalonia-independence-detector
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the catalonia_independence dataset. It achieves the following results on the evaluation set:
- Loss: 0.6065
- Accuracy: 0.7612
Training and evaluation data
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 377 | 0.6311 | 0.7453 |
0.7393 | 2.0 | 754 | 0.6065 | 0.7612 |
0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 |
0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 |
0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 |
Model in action 🚀
Fast usage with pipelines:
from transformers import pipeline
model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector"
independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
independence_analysis(
"Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol."
)
# Output:
[{'label': 'AGAINST', 'score': 0.7457581758499146}]
independence_analysis(
"Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont"
)
# Output:
[{'label': 'NEUTRAL', 'score': 0.7436802983283997}]
independence_analysis(
"Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou"
)
# Output:
[{'label': 'FAVOR', 'score': 0.9040119647979736}]
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
Citation
Thx to HF.co & @lewtun for Dataset ;)
Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.
Created by Jonatan Luna | LinkedIn
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector
Space using JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector 1
Evaluation results
- Accuracy on catalonia_independenceself-reported0.761
- Accuracy on catalonia_independencetest set self-reported0.721
- Precision Macro on catalonia_independencetest set self-reported0.753
- Precision Micro on catalonia_independencetest set self-reported0.721
- Precision Weighted on catalonia_independencetest set self-reported0.737
- Recall Macro on catalonia_independencetest set self-reported0.688
- Recall Micro on catalonia_independencetest set self-reported0.721
- Recall Weighted on catalonia_independencetest set self-reported0.721
- F1 Macro on catalonia_independencetest set self-reported0.701
- F1 Micro on catalonia_independencetest set self-reported0.721