|
--- |
|
library_name: transformers |
|
datasets: |
|
- Joctor/cn_bokete_oogiri_caption |
|
base_model: |
|
- Qwen/Qwen2-VL-7B-Instruct |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
AI大喜利,简介 https://www.gcores.com/articles/188405 |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
model_id = "Joctor/qwen2-vl-7b-instruct-ogiri" |
|
|
|
# default: Load the model on the available device(s) |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_id, torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
# default processer |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "path/to/image", |
|
}, |
|
{"type": "text", "text": "根据图片给出有趣巧妙的回答"}, |
|
], |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
https://huggingface.co./datasets/Joctor/cn_bokete_oogiri_caption |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
基础模型:qwen2vl |
|
微调方式:数据量充足,采用SFT微调 |
|
微调参数:max_length=1024(短就是好!), num_train_epochs=1, per_device_train_batch_size=1, gradient_accumulation_steps=1 |
|
训练设备:10 * 4090D |
|
训练时长:22小时 |