metadata
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bertweet-base_epoch3_batch4_lr2e-05_w0.01
results: []
bertweet-base_epoch3_batch4_lr2e-05_w0.01
This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5753
- Accuracy: 0.8687
- F1: 0.8275
- Precision: 0.8109
- Recall: 0.8448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5235 | 1.0 | 788 | 0.4170 | 0.8643 | 0.8076 | 0.8562 | 0.7642 |
0.3755 | 2.0 | 1576 | 0.5068 | 0.8699 | 0.8272 | 0.8187 | 0.8358 |
0.2978 | 3.0 | 2364 | 0.5753 | 0.8687 | 0.8275 | 0.8109 | 0.8448 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3