nomic-text-embed COVID QA Matryoshka test
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("JerryO3/test")
sentences = [
'The monolayers were removed from their plastic surfaces and serially passaged whenever they became confluent. Cells were plated out onto 96-well culture plates for cytotoxicity and anti-influenza assays, and propagated at 37 °C in an atmosphere of 5% CO 2 . The influenza strain A/Leningrad/134/17/1957 H2N2) was purchased from National Control Institute of Veterinary Bioproducts and Pharmaceuticals (Beijing, China). Virus was routinely grown on MDCK cells. The stock cultures were prepared from supernatants of infected cells and stored at −80 °C. The cellular toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. Briefly, cells were seeded on a microtiter plate in the absence or presence of various concentrations (20 µM -0.0098 µM) of patchouli alcohol (eight replicates) and incubated at 37 °C in a humidified atmosphere of 5% CO 2 for 72 h. The supernatants were discarded, washed with PBS twice and MTT reagent (5 mg/mL in PBS) was added to each well. After incubation at 37 °C for 4 h, the supernatants were removed, then 200 μL DMSO was added and incubated at 37 °C for another 30 min.',
'What method was used to measure the inhibition of viral replication?',
'What can be a factor in using common vectors for the delivery of vaccines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.321 |
cosine_accuracy@3 |
0.6049 |
cosine_accuracy@5 |
0.7222 |
cosine_accuracy@10 |
0.858 |
cosine_precision@1 |
0.321 |
cosine_precision@3 |
0.2016 |
cosine_precision@5 |
0.1444 |
cosine_precision@10 |
0.0858 |
cosine_recall@1 |
0.321 |
cosine_recall@3 |
0.6049 |
cosine_recall@5 |
0.7222 |
cosine_recall@10 |
0.858 |
cosine_ndcg@10 |
0.5726 |
cosine_mrr@10 |
0.4832 |
cosine_map@100 |
0.4877 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3395 |
cosine_accuracy@3 |
0.6173 |
cosine_accuracy@5 |
0.6914 |
cosine_accuracy@10 |
0.8395 |
cosine_precision@1 |
0.3395 |
cosine_precision@3 |
0.2058 |
cosine_precision@5 |
0.1383 |
cosine_precision@10 |
0.084 |
cosine_recall@1 |
0.3395 |
cosine_recall@3 |
0.6173 |
cosine_recall@5 |
0.6914 |
cosine_recall@10 |
0.8395 |
cosine_ndcg@10 |
0.577 |
cosine_mrr@10 |
0.4943 |
cosine_map@100 |
0.5 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3148 |
cosine_accuracy@3 |
0.5864 |
cosine_accuracy@5 |
0.6605 |
cosine_accuracy@10 |
0.7901 |
cosine_precision@1 |
0.3148 |
cosine_precision@3 |
0.1955 |
cosine_precision@5 |
0.1321 |
cosine_precision@10 |
0.079 |
cosine_recall@1 |
0.3148 |
cosine_recall@3 |
0.5864 |
cosine_recall@5 |
0.6605 |
cosine_recall@10 |
0.7901 |
cosine_ndcg@10 |
0.5455 |
cosine_mrr@10 |
0.468 |
cosine_map@100 |
0.4775 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2716 |
cosine_accuracy@3 |
0.537 |
cosine_accuracy@5 |
0.6543 |
cosine_accuracy@10 |
0.7284 |
cosine_precision@1 |
0.2716 |
cosine_precision@3 |
0.179 |
cosine_precision@5 |
0.1309 |
cosine_precision@10 |
0.0728 |
cosine_recall@1 |
0.2716 |
cosine_recall@3 |
0.537 |
cosine_recall@5 |
0.6543 |
cosine_recall@10 |
0.7284 |
cosine_ndcg@10 |
0.4966 |
cosine_mrr@10 |
0.4221 |
cosine_map@100 |
0.4335 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2407 |
cosine_accuracy@3 |
0.4753 |
cosine_accuracy@5 |
0.5864 |
cosine_accuracy@10 |
0.6728 |
cosine_precision@1 |
0.2407 |
cosine_precision@3 |
0.1584 |
cosine_precision@5 |
0.1173 |
cosine_precision@10 |
0.0673 |
cosine_recall@1 |
0.2407 |
cosine_recall@3 |
0.4753 |
cosine_recall@5 |
0.5864 |
cosine_recall@10 |
0.6728 |
cosine_ndcg@10 |
0.4509 |
cosine_mrr@10 |
0.3798 |
cosine_map@100 |
0.3911 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,453 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 112 tokens
- mean: 319.17 tokens
- max: 778 tokens
|
- min: 6 tokens
- mean: 14.84 tokens
- max: 65 tokens
|
- Samples:
positive |
anchor |
We find that the slowing growth in daily reported deaths in Italy is consistent with a significant impact of interventions implemented several weeks earlier. In Italy, we estimate that the effective reproduction number, Rt, dropped to close to 1 around the time of Iockdown (11th March), although with a high level of uncertainty. Overall, we estimate that countries have managed to reduce their reproduction number. Our estimates have wide credible intervals and contain 1 for countries that have implemented a |
|
[46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases. The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. |
Why are Nucleic amplification tests (NAAT) usually preferred as in the case of MERS-CoV diagnosis? |
By the time symptoms appear in HCPS, both strong antiviral responses, and, for the more virulent viral genotypes, viral RNA can be detected in blood plasma or nucleated blood cells respectively [63, 64] . At least three studies have correlated plasma viral RNA with disease severity for HCPS and HFRS, suggesting that the replication of the virus plays an ongoing and real-time role in viral pathogenesis [65] [66] [67] . Several hallmark pathologic changes have been identified that occur in both HFRS and HCPS. A critical feature of both is a transient (~ 1-5 days) capillary leak involving the kidney and retroperitoneal space in HFRS and the lungs in HCPS. The resulting leakage is exudative in character, with chemical composition high in protein and resembling plasma. The continued experience indicating the strong tissue tropism for endothelial cells, specifically, is among the several factors that make β3 integrin an especially attractive candidate as an important in vivo receptor for hantaviruses. It is likely that hantaviruses arrive at their target tissues through uptake by regional lymph nodes, perhaps with or within an escorting lung histiocyte. The virus seeds local endothelium, where the first few infected cells give rise, ultimately, to a primary viremia, a process that appears to take a long time for hantavirus infections [62, 63] . |
Which is an especially attractive candidate as an important in vivo receptor for hantaviruses? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
auto_find_batch_size
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 8
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: True
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0549 |
10 |
5.6725 |
- |
- |
- |
- |
- |
0.1099 |
20 |
4.6781 |
- |
- |
- |
- |
- |
0.1648 |
30 |
3.9597 |
- |
- |
- |
- |
- |
0.2198 |
40 |
3.2221 |
- |
- |
- |
- |
- |
0.2747 |
50 |
2.2144 |
- |
- |
- |
- |
- |
0.3297 |
60 |
2.8916 |
- |
- |
- |
- |
- |
0.3846 |
70 |
1.7038 |
- |
- |
- |
- |
- |
0.4396 |
80 |
2.4738 |
- |
- |
- |
- |
- |
0.4945 |
90 |
1.8951 |
- |
- |
- |
- |
- |
0.5495 |
100 |
1.515 |
- |
- |
- |
- |
- |
0.6044 |
110 |
1.5431 |
- |
- |
- |
- |
- |
0.6593 |
120 |
2.4492 |
- |
- |
- |
- |
- |
0.7143 |
130 |
1.656 |
- |
- |
- |
- |
- |
0.7692 |
140 |
1.7953 |
- |
- |
- |
- |
- |
0.8242 |
150 |
1.8679 |
- |
- |
- |
- |
- |
0.8791 |
160 |
2.1551 |
- |
- |
- |
- |
- |
0.9341 |
170 |
1.5363 |
- |
- |
- |
- |
- |
0.9890 |
180 |
1.2529 |
- |
- |
- |
- |
- |
1.0 |
182 |
- |
0.3894 |
0.4585 |
0.4805 |
0.3287 |
0.4926 |
1.0440 |
190 |
1.319 |
- |
- |
- |
- |
- |
1.0989 |
200 |
1.0985 |
- |
- |
- |
- |
- |
1.1538 |
210 |
1.0403 |
- |
- |
- |
- |
- |
1.2088 |
220 |
0.4363 |
- |
- |
- |
- |
- |
1.2637 |
230 |
0.2102 |
- |
- |
- |
- |
- |
1.3187 |
240 |
0.3584 |
- |
- |
- |
- |
- |
1.3736 |
250 |
0.2683 |
- |
- |
- |
- |
- |
1.4286 |
260 |
0.4438 |
- |
- |
- |
- |
- |
1.4835 |
270 |
0.34 |
- |
- |
- |
- |
- |
1.5385 |
280 |
0.4296 |
- |
- |
- |
- |
- |
1.5934 |
290 |
0.2323 |
- |
- |
- |
- |
- |
1.6484 |
300 |
0.3259 |
- |
- |
- |
- |
- |
1.7033 |
310 |
0.4339 |
- |
- |
- |
- |
- |
1.7582 |
320 |
0.1524 |
- |
- |
- |
- |
- |
1.8132 |
330 |
0.0782 |
- |
- |
- |
- |
- |
1.8681 |
340 |
0.4306 |
- |
- |
- |
- |
- |
1.9231 |
350 |
0.312 |
- |
- |
- |
- |
- |
1.9780 |
360 |
0.2112 |
- |
- |
- |
- |
- |
2.0 |
364 |
- |
0.4139 |
0.4526 |
0.4762 |
0.3761 |
0.4672 |
2.0330 |
370 |
0.2341 |
- |
- |
- |
- |
- |
2.0879 |
380 |
0.1965 |
- |
- |
- |
- |
- |
2.1429 |
390 |
0.3019 |
- |
- |
- |
- |
- |
2.1978 |
400 |
0.1518 |
- |
- |
- |
- |
- |
2.2527 |
410 |
0.0203 |
- |
- |
- |
- |
- |
2.3077 |
420 |
0.0687 |
- |
- |
- |
- |
- |
2.3626 |
430 |
0.0206 |
- |
- |
- |
- |
- |
2.4176 |
440 |
0.3615 |
- |
- |
- |
- |
- |
2.4725 |
450 |
0.4674 |
- |
- |
- |
- |
- |
2.5275 |
460 |
0.0623 |
- |
- |
- |
- |
- |
2.5824 |
470 |
0.0222 |
- |
- |
- |
- |
- |
2.6374 |
480 |
0.1049 |
- |
- |
- |
- |
- |
2.6923 |
490 |
0.4955 |
- |
- |
- |
- |
- |
2.7473 |
500 |
0.439 |
- |
- |
- |
- |
- |
2.8022 |
510 |
0.0052 |
- |
- |
- |
- |
- |
2.8571 |
520 |
0.16 |
- |
- |
- |
- |
- |
2.9121 |
530 |
0.0583 |
- |
- |
- |
- |
- |
2.9670 |
540 |
0.0127 |
- |
- |
- |
- |
- |
3.0 |
546 |
- |
0.4427 |
0.4765 |
0.508 |
0.397 |
0.5021 |
3.0220 |
550 |
0.0143 |
- |
- |
- |
- |
- |
3.0769 |
560 |
0.0228 |
- |
- |
- |
- |
- |
3.1319 |
570 |
0.0704 |
- |
- |
- |
- |
- |
3.1868 |
580 |
0.0086 |
- |
- |
- |
- |
- |
3.2418 |
590 |
0.001 |
- |
- |
- |
- |
- |
3.2967 |
600 |
0.002 |
- |
- |
- |
- |
- |
3.3516 |
610 |
0.0016 |
- |
- |
- |
- |
- |
3.4066 |
620 |
0.021 |
- |
- |
- |
- |
- |
3.4615 |
630 |
0.0013 |
- |
- |
- |
- |
- |
3.5165 |
640 |
0.0723 |
- |
- |
- |
- |
- |
3.5714 |
650 |
0.0045 |
- |
- |
- |
- |
- |
3.6264 |
660 |
0.0048 |
- |
- |
- |
- |
- |
3.6813 |
670 |
0.1005 |
- |
- |
- |
- |
- |
3.7363 |
680 |
0.0018 |
- |
- |
- |
- |
- |
3.7912 |
690 |
0.0101 |
- |
- |
- |
- |
- |
3.8462 |
700 |
0.0104 |
- |
- |
- |
- |
- |
3.9011 |
710 |
0.0025 |
- |
- |
- |
- |
- |
3.9560 |
720 |
0.014 |
- |
- |
- |
- |
- |
4.0 |
728 |
- |
0.4335 |
0.4775 |
0.5000 |
0.3911 |
0.4877 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}