JatinkInnovision's picture
Add new SentenceTransformer model
4ef3c65 verified
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
widget:
- source_sentence: A construction worker is standing on a crane placing a large arm
on top of a stature in progress.
sentences:
- A man is playing with his camera.
- A person standing
- Nobody is standing
- source_sentence: A boy in red slides down an inflatable ride.
sentences:
- a baby smiling
- A boy is playing on an inflatable ride.
- A boy pierces a knife through an inflatable ride.
- source_sentence: A man in a black shirt is playing a guitar.
sentences:
- A group of women are selling their wares
- The man is wearing black.
- The man is wearing a blue shirt.
- source_sentence: A man with a large power drill standing next to his daughter with
a vacuum cleaner hose.
sentences:
- A man holding a drill stands next to a girl holding a vacuum hose.
- Kids ride an amusement ride.
- The man and girl are painting the walls.
- source_sentence: A middle-aged man works under the engine of a train on rail tracks.
sentences:
- A guy is working on a train.
- Two young asian men are squatting.
- A guy is driving to work.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9558178241791496
name: Cosine Accuracy
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co./Snowflake/snowflake-arctic-embed-l-v2.0) on the [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co./Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JatinkInnovision/snowflake-arctic-embed-l-v2.0_all-nli")
# Run inference
sentences = [
'A middle-aged man works under the engine of a train on rail tracks.',
'A guy is working on a train.',
'A guy is driving to work.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `all-nli-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9558** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### all-nli
* Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### all-nli
* Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 50
- `per_device_eval_batch_size`: 50
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 50
- `per_device_eval_batch_size`: 50
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | all-nli-test_cosine_accuracy |
|:------:|:-----:|:-------------:|:---------------:|:----------------------------:|
| 0.0090 | 100 | 1.8838 | 0.6502 | - |
| 0.0179 | 200 | 1.2991 | 0.6177 | - |
| 0.0269 | 300 | 1.2721 | 0.6417 | - |
| 0.0359 | 400 | 1.2265 | 0.7053 | - |
| 0.0448 | 500 | 1.0111 | 0.7147 | - |
| 0.0538 | 600 | 1.0491 | 0.7457 | - |
| 0.0627 | 700 | 1.0186 | 0.7922 | - |
| 0.0717 | 800 | 1.135 | 0.8940 | - |
| 0.0807 | 900 | 1.0747 | 0.7007 | - |
| 0.0896 | 1000 | 0.9373 | 0.7298 | - |
| 0.0986 | 1100 | 0.9572 | 0.6809 | - |
| 0.1076 | 1200 | 1.1316 | 0.7260 | - |
| 0.1165 | 1300 | 0.9188 | 0.7085 | - |
| 0.1255 | 1400 | 0.9554 | 0.6876 | - |
| 0.1344 | 1500 | 0.9494 | 0.7492 | - |
| 0.1434 | 1600 | 0.811 | 0.7234 | - |
| 0.1524 | 1700 | 0.7766 | 0.6744 | - |
| 0.1613 | 1800 | 0.9317 | 0.7178 | - |
| 0.1703 | 1900 | 0.9148 | 0.6960 | - |
| 0.1793 | 2000 | 0.8643 | 0.6642 | - |
| 0.1882 | 2100 | 0.7604 | 0.6425 | - |
| 0.1972 | 2200 | 0.776 | 0.6347 | - |
| 0.2061 | 2300 | 0.8286 | 0.6581 | - |
| 0.2151 | 2400 | 0.8946 | 0.5866 | - |
| 0.2241 | 2500 | 0.8507 | 0.6845 | - |
| 0.2330 | 2600 | 0.7917 | 0.6091 | - |
| 0.2420 | 2700 | 0.8192 | 0.7073 | - |
| 0.2510 | 2800 | 0.8818 | 0.6584 | - |
| 0.2599 | 2900 | 0.8261 | 0.6112 | - |
| 0.2689 | 3000 | 0.8017 | 0.6883 | - |
| 0.2779 | 3100 | 0.8147 | 0.6450 | - |
| 0.2868 | 3200 | 0.8297 | 0.6086 | - |
| 0.2958 | 3300 | 0.7516 | 0.5857 | - |
| 0.3047 | 3400 | 0.8628 | 0.6061 | - |
| 0.3137 | 3500 | 0.7758 | 0.5751 | - |
| 0.3227 | 3600 | 0.7773 | 0.6022 | - |
| 0.3316 | 3700 | 0.7559 | 0.5446 | - |
| 0.3406 | 3800 | 0.796 | 0.5842 | - |
| 0.3496 | 3900 | 0.8295 | 0.5822 | - |
| 0.3585 | 4000 | 0.7292 | 0.5821 | - |
| 0.3675 | 4100 | 0.7475 | 0.6358 | - |
| 0.3764 | 4200 | 0.7916 | 0.5688 | - |
| 0.3854 | 4300 | 0.7214 | 0.5653 | - |
| 0.3944 | 4400 | 0.704 | 0.5564 | - |
| 0.4033 | 4500 | 0.7817 | 0.5876 | - |
| 0.4123 | 4600 | 0.7549 | 0.5358 | - |
| 0.4213 | 4700 | 0.7206 | 0.5785 | - |
| 0.4302 | 4800 | 0.7462 | 0.5568 | - |
| 0.4392 | 4900 | 0.665 | 0.5765 | - |
| 0.4481 | 5000 | 0.7743 | 0.5303 | - |
| 0.4571 | 5100 | 0.7055 | 0.5733 | - |
| 0.4661 | 5200 | 0.7004 | 0.6280 | - |
| 0.4750 | 5300 | 0.7021 | 0.5444 | - |
| 0.4840 | 5400 | 0.6858 | 0.5787 | - |
| 0.4930 | 5500 | 0.7007 | 0.6124 | - |
| 0.5019 | 5600 | 0.6722 | 0.5705 | - |
| 0.5109 | 5700 | 0.7124 | 0.5440 | - |
| 0.5199 | 5800 | 0.6657 | 0.5262 | - |
| 0.5288 | 5900 | 0.6784 | 0.5400 | - |
| 0.5378 | 6000 | 0.6644 | 0.5093 | - |
| 0.5467 | 6100 | 0.7195 | 0.5453 | - |
| 0.5557 | 6200 | 0.6958 | 0.5216 | - |
| 0.5647 | 6300 | 0.7202 | 0.5250 | - |
| 0.5736 | 6400 | 0.6921 | 0.5089 | - |
| 0.5826 | 6500 | 0.6926 | 0.5207 | - |
| 0.5916 | 6600 | 0.714 | 0.5084 | - |
| 0.6005 | 6700 | 0.6605 | 0.4943 | - |
| 0.6095 | 6800 | 0.7222 | 0.5058 | - |
| 0.6184 | 6900 | 0.7171 | 0.4950 | - |
| 0.6274 | 7000 | 0.6344 | 0.5110 | - |
| 0.6364 | 7100 | 0.7057 | 0.5197 | - |
| 0.6453 | 7200 | 0.6895 | 0.5096 | - |
| 0.6543 | 7300 | 0.7226 | 0.4819 | - |
| 0.6633 | 7400 | 0.6725 | 0.4780 | - |
| 0.6722 | 7500 | 0.7469 | 0.5145 | - |
| 0.6812 | 7600 | 0.7016 | 0.4969 | - |
| 0.6901 | 7700 | 0.6655 | 0.4965 | - |
| 0.6991 | 7800 | 0.7281 | 0.4913 | - |
| 0.7081 | 7900 | 0.6748 | 0.5121 | - |
| 0.7170 | 8000 | 0.6505 | 0.5207 | - |
| 0.7260 | 8100 | 0.6594 | 0.4823 | - |
| 0.7350 | 8200 | 0.7042 | 0.4903 | - |
| 0.7439 | 8300 | 0.6995 | 0.4630 | - |
| 0.7529 | 8400 | 0.634 | 0.4217 | - |
| 0.7619 | 8500 | 0.3772 | 0.3684 | - |
| 0.7708 | 8600 | 0.3416 | 0.3585 | - |
| 0.7798 | 8700 | 0.3113 | 0.3471 | - |
| 0.7887 | 8800 | 0.2793 | 0.3379 | - |
| 0.7977 | 8900 | 0.2577 | 0.3349 | - |
| 0.8067 | 9000 | 0.249 | 0.3320 | - |
| 0.8156 | 9100 | 0.2191 | 0.3290 | - |
| 0.8246 | 9200 | 0.2492 | 0.3255 | - |
| 0.8336 | 9300 | 0.2464 | 0.3258 | - |
| 0.8425 | 9400 | 0.2288 | 0.3247 | - |
| 0.8515 | 9500 | 0.2132 | 0.3248 | - |
| 0.8604 | 9600 | 0.2173 | 0.3259 | - |
| 0.8694 | 9700 | 0.2008 | 0.3223 | - |
| 0.8784 | 9800 | 0.2016 | 0.3219 | - |
| 0.8873 | 9900 | 0.1962 | 0.3195 | - |
| 0.8963 | 10000 | 0.1952 | 0.3185 | - |
| 0.9053 | 10100 | 0.1959 | 0.3158 | - |
| 0.9142 | 10200 | 0.2002 | 0.3138 | - |
| 0.9232 | 10300 | 0.1882 | 0.3150 | - |
| 0.9322 | 10400 | 0.1856 | 0.3124 | - |
| 0.9411 | 10500 | 0.1971 | 0.3143 | - |
| 0.9501 | 10600 | 0.1918 | 0.3137 | - |
| 0.9590 | 10700 | 0.1825 | 0.3147 | - |
| 0.9680 | 10800 | 0.1762 | 0.3155 | - |
| 0.9770 | 10900 | 0.1778 | 0.3139 | - |
| 0.9859 | 11000 | 0.1659 | 0.3138 | - |
| 0.9949 | 11100 | 0.1848 | 0.3131 | - |
| 1.0 | 11157 | - | - | 0.9558 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->