|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0341 |
|
- Rouge1: 16.9947 |
|
- Rouge2: 8.1917 |
|
- Rougel: 16.5751 |
|
- Rougelsum: 16.6864 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 7.0901 | 1.0 | 1209 | 3.2969 | 13.9062 | 5.7456 | 13.4148 | 13.409 | |
|
| 3.9124 | 2.0 | 2418 | 3.1529 | 16.6418 | 8.4375 | 15.85 | 15.9119 | |
|
| 3.5991 | 3.0 | 3627 | 3.1181 | 18.7571 | 9.9189 | 18.0758 | 18.1545 | |
|
| 3.4197 | 4.0 | 4836 | 3.0619 | 17.8796 | 8.8002 | 17.2547 | 17.3509 | |
|
| 3.3215 | 5.0 | 6045 | 3.0706 | 16.9356 | 7.5098 | 16.2641 | 16.468 | |
|
| 3.2448 | 6.0 | 7254 | 3.0455 | 16.7471 | 7.7886 | 16.345 | 16.4044 | |
|
| 3.2033 | 7.0 | 8463 | 3.0349 | 17.0401 | 8.3424 | 16.6741 | 16.7633 | |
|
| 3.177 | 8.0 | 9672 | 3.0341 | 16.9947 | 8.1917 | 16.5751 | 16.6864 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.2 |
|
|