BERT-TextClassification

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3769
  • Accuracy: 0.841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.6928 0.518
No log 2.0 250 0.6834 0.573
No log 3.0 375 0.6808 0.534
0.6958 4.0 500 0.6763 0.533
0.6958 5.0 625 0.6564 0.639
0.6958 6.0 750 0.6368 0.672
0.6958 7.0 875 0.6091 0.699
0.6446 8.0 1000 0.5769 0.713
0.6446 9.0 1125 0.5434 0.73
0.6446 10.0 1250 0.5142 0.748
0.6446 11.0 1375 0.4820 0.757
0.5224 12.0 1500 0.4638 0.785
0.5224 13.0 1625 0.4383 0.792
0.5224 14.0 1750 0.4222 0.804
0.5224 15.0 1875 0.4121 0.816
0.4233 16.0 2000 0.3995 0.826
0.4233 17.0 2125 0.3958 0.822
0.4233 18.0 2250 0.3886 0.833
0.4233 19.0 2375 0.3843 0.832
0.3784 20.0 2500 0.3820 0.835
0.3784 21.0 2625 0.3804 0.834
0.3784 22.0 2750 0.3784 0.836
0.3784 23.0 2875 0.3773 0.84
0.3621 24.0 3000 0.3771 0.841
0.3621 25.0 3125 0.3769 0.841

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Jahanzeb1/BERT-TextClassification

Adapter
(35)
this model