seizure_vit_jlb_231112_fft_raw_combo
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the JLB-JLB/seizure_detection_224x224_raw_frequency dataset. It achieves the following results on the evaluation set:
- Loss: 0.4822
- Roc Auc: 0.7667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Roc Auc |
---|---|---|---|---|
0.4777 | 0.17 | 500 | 0.5237 | 0.7455 |
0.4469 | 0.34 | 1000 | 0.5114 | 0.7542 |
0.4122 | 0.52 | 1500 | 0.5084 | 0.7567 |
0.3904 | 0.69 | 2000 | 0.5043 | 0.7611 |
0.3619 | 0.86 | 2500 | 0.5283 | 0.7609 |
0.3528 | 1.03 | 3000 | 0.5352 | 0.7517 |
0.3445 | 1.2 | 3500 | 0.5338 | 0.7572 |
0.3221 | 1.37 | 4000 | 0.5388 | 0.7509 |
0.3109 | 1.55 | 4500 | 0.5641 | 0.7458 |
0.3203 | 1.72 | 5000 | 0.5404 | 0.7574 |
0.294 | 1.89 | 5500 | 0.5421 | 0.7564 |
0.2964 | 2.06 | 6000 | 0.5582 | 0.7493 |
0.292 | 2.23 | 6500 | 0.5513 | 0.7561 |
0.2838 | 2.4 | 7000 | 0.5557 | 0.7598 |
0.2736 | 2.58 | 7500 | 0.5514 | 0.7606 |
0.2922 | 2.75 | 8000 | 0.5503 | 0.7538 |
0.2699 | 2.92 | 8500 | 0.5535 | 0.7578 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for JLB-JLB/seizure_vit_jlb_231112_fft_raw_combo
Base model
google/vit-base-patch16-224-in21k