|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- mistralai/Mistral-7B-v0.1 |
|
- CultriX/NeuralTrix-7B-dpo |
|
base_model: |
|
- mistralai/Mistral-7B-v0.1 |
|
- CultriX/NeuralTrix-7B-dpo |
|
--- |
|
|
|
# Mistral-CultriX-slerp |
|
|
|
Research & Development for AutoSynthetix AI |
|
|
|
π Website https://autosynthetix.com/ |
|
|
|
π¨ Discord https://discord.gg/pAKqENStQr |
|
|
|
π¦ GitHub https://github.com/jdwebprogrammer |
|
|
|
π¦ GitLab https://gitlab.com/jdwebprogrammer |
|
|
|
π Patreon https://patreon.com/jdwebprogrammer |
|
|
|
π· YouTube https://www.youtube.com/@jdwebprogrammer |
|
|
|
πΊ Twitch https://www.twitch.tv/jdwebprogrammer |
|
|
|
π¦ Twitter(X) https://twitter.com/jdwebprogrammer |
|
|
|
* License includes the license of the model derivatives: |
|
- MergeKit LGPL-3.0 https://github.com/arcee-ai/mergekit?tab=LGPL-3.0-1-ov-file#readme |
|
- Mistral Apache 2.0 https://huggingface.co./mistralai/Mistral-7B-v0.1 |
|
- CultriX Apache 2.0 https://huggingface.co./CultriX/NeuralTrix-7B-dpo |
|
|
|
Mistral-CultriX-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
* [CultriX/NeuralTrix-7B-dpo](https://huggingface.co./CultriX/NeuralTrix-7B-dpo) |
|
|
|
## 𧩠Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: mistralai/Mistral-7B-v0.1 |
|
layer_range: [0, 32] |
|
- model: CultriX/NeuralTrix-7B-dpo |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "JDWebProgrammer/Mistral-CultriX-slerp" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |