T5 Question Generation and Question Answering
Model description
This model is a T5 Transformers model (airklizz/t5-base-multi-fr-wiki-news) that was fine-tuned in french on 3 different tasks
question generation
question answering
answer extraction
It obtains quite good results on FQuAD validation dataset.
Intended uses & limitations
This model functions for the 3 tasks mentionned earlier and was not tested on other tasks.
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("JDBN/t5-base-fr-qg-fquad")
tokenizer = T5Tokenizer.from_pretrained("JDBN/t5-base-fr-qg-fquad")
Training data
The initial model used was https://huggingface.co./airKlizz/t5-base-multi-fr-wiki-news. This model was finetuned on a dataset composed of FQuAD and PIAF on the 3 tasks mentioned previously.
The data were preprocessed like this
question generation: "generate question: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. Il a été élu en 2009 pour devenir le 44ème président des Etats-Unis d'Amérique."
question answering: "question: Quand Barack Hussein Obamaa-t-il été élu président des Etats-Unis d’Amérique? context: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. Il a été élu en 2009 pour devenir le 44ème président des Etats-Unis d’Amérique."
answer extraction: "extract_answers: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. Il a été élu en 2009 pour devenir le 44ème président des Etats-Unis d’Amérique ."
The preprocessing we used was implemented in https://github.com/patil-suraj/question_generation
Eval results
On FQuAD validation set
BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | METEOR | ROUGE_L | CIDEr |
---|---|---|---|---|---|---|
0.290 | 0.203 | 0.149 | 0.111 | 0.197 | 0.284 | 1.038 |
Question Answering metrics
For these metrics, the performance of this question answering model (https://huggingface.co./illuin/camembert-base-fquad) on FQuAD original question and on T5 generated questions are compared.
Questions | Exact Match | F1 Score |
---|---|---|
Original FQuAD | 54.015 | 77.466 |
Generated | 45.765 | 67.306 |
BibTeX entry and citation info
@misc{githubPatil,
author = {Patil Suraj},
title = {question generation GitHub repository},
year = {2020},
howpublished={\url{https://github.com/patil-suraj/question_generation}}
}
@article{T5,
title={Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
author={Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
year={2019},
eprint={1910.10683},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{dhoffschmidt2020fquad,
title={FQuAD: French Question Answering Dataset},
author={Martin d'Hoffschmidt and Wacim Belblidia and Tom Brendlé and Quentin Heinrich and Maxime Vidal},
year={2020},
eprint={2002.06071},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18