gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-14
This model is a fine-tuned version of Alibaba-NLP/gte-large-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1507
- F1: 0.9470
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.4531 | 0.2527 | 100 | 0.2315 | 0.9007 |
0.201 | 0.5054 | 200 | 0.1689 | 0.9390 |
0.1611 | 0.7581 | 300 | 0.1620 | 0.9456 |
0.152 | 1.0107 | 400 | 0.1230 | 0.9560 |
0.1046 | 1.2634 | 500 | 0.1297 | 0.9510 |
0.1138 | 1.5161 | 600 | 0.1385 | 0.9515 |
0.1212 | 1.7688 | 700 | 0.1365 | 0.9497 |
0.1203 | 2.0215 | 800 | 0.1339 | 0.9555 |
0.0946 | 2.2742 | 900 | 0.1253 | 0.9538 |
0.0974 | 2.5268 | 1000 | 0.1891 | 0.9287 |
0.1191 | 2.7795 | 1100 | 0.1375 | 0.9531 |
0.1078 | 3.0322 | 1200 | 0.1806 | 0.9504 |
0.0751 | 3.2849 | 1300 | 0.1466 | 0.9550 |
0.0799 | 3.5376 | 1400 | 0.1507 | 0.9470 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 1
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for J1N2/gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-14
Base model
Alibaba-NLP/gte-large-en-v1.5