|
--- |
|
language: |
|
- az |
|
tags: |
|
- token-classification |
|
- ner |
|
- bert |
|
- multilingual |
|
license: mit |
|
datasets: |
|
- LocalDoc/azerbaijani-ner-dataset |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: mBERT Azerbaijani NER Model |
|
results: |
|
- task: |
|
name: Named Entity Recognition |
|
type: token-classification |
|
dataset: |
|
name: Azerbaijani NER Dataset |
|
type: LocalDoc/azerbaijani-ner-dataset |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.704872 |
|
- name: Recall |
|
type: recall |
|
value: 0.650684 |
|
- name: F1 |
|
type: f1 |
|
value: 0.676695 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.920898 |
|
--- |
|
# mBERT Azerbaijani NER Model |
|
[![Hugging Face Model](https://img.shields.io/badge/Hugging%20Face-Model-blue)](https://huggingface.co./IsmatS/mbert-az-ner) |
|
|
|
This model is a fine-tuned version of **mBERT** (Multilingual BERT) for Named Entity Recognition (NER) in the Azerbaijani language. It recognizes several entity types commonly used in Azerbaijani text, providing solid performance on tasks requiring entity extraction, such as personal names, locations, organizations, and dates. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: `bert-base-multilingual-cased` |
|
- **Fine-tuned on**: [Azerbaijani Named Entity Recognition Dataset](https://huggingface.co./datasets/LocalDoc/azerbaijani-ner-dataset) |
|
- **Task**: Named Entity Recognition (NER) |
|
- **Language**: Azerbaijani (az) |
|
- **Dataset**: Custom Azerbaijani NER dataset with entity tags such as `PERSON`, `LOCATION`, `ORGANISATION`, `DATE`, etc. |
|
|
|
### Data Source |
|
|
|
The model was trained on the [Azerbaijani NER Dataset](https://huggingface.co./datasets/LocalDoc/azerbaijani-ner-dataset), which provides annotated data with 25 distinct entity types specifically for the Azerbaijani language. This dataset is an invaluable resource for improving NLP tasks in Azerbaijani, including entity recognition and language understanding. |
|
|
|
### Entity Types |
|
The model recognizes the following entities: |
|
- **PERSON**: Names of people |
|
- **LOCATION**: Geographical locations |
|
- **ORGANISATION**: Companies, institutions |
|
- **DATE**: Dates and periods |
|
- **MONEY**: Monetary values |
|
- **TIME**: Time expressions |
|
- **GPE**: Countries, cities, states |
|
- **FACILITY**: Buildings, landmarks, etc. |
|
- **EVENT**: Events and occurrences |
|
- **...and more** |
|
|
|
For the full list of entities, please refer to the dataset description. |
|
|
|
## Performance Metrics |
|
|
|
### Epoch-wise Performance |
|
|
|
| Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|-------|---------------|-----------------|-----------|--------|--------|----------| |
|
| 1 | 0.295200 | 0.265711 | 0.715424 | 0.622853 | 0.665937 | 0.919136 | |
|
| 2 | 0.248600 | 0.252083 | 0.721036 | 0.637979 | 0.676970 | 0.921439 | |
|
| 3 | 0.206800 | 0.253372 | 0.704872 | 0.650684 | 0.676695 | 0.920898 | |
|
|
|
### Evaluation Summary (Epoch 3) |
|
|
|
- **Evaluation Loss**: 0.253372 |
|
- **Evaluation Precision**: 0.704872 |
|
- **Evaluation Recall**: 0.650684 |
|
- **Evaluation F1**: 0.676695 |
|
- **Evaluation Accuracy**: 0.920898 |
|
|
|
## Usage |
|
|
|
You can use this model with the Hugging Face `transformers` library to perform NER on Azerbaijani text. Here’s an example: |
|
|
|
### Installation |
|
|
|
Make sure you have the `transformers` library installed: |
|
|
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
### Inference Example |
|
|
|
Load the model and tokenizer, then run the NER pipeline on Azerbaijani text: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline |
|
|
|
# Load the model and tokenizer |
|
model_name = "IsmatS/mbert-az-ner" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
|
|
# Set up the NER pipeline |
|
nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
|
|
# Example sentence |
|
sentence = "Bakı şəhərində Azərbaycan Respublikasının prezidenti İlham Əliyev." |
|
entities = nlp_ner(sentence) |
|
|
|
# Display entities |
|
for entity in entities: |
|
print(f"Entity: {entity['word']}, Label: {entity['entity_group']}, Score: {entity['score']}") |
|
``` |
|
|
|
### Sample Output |
|
```json |
|
[ |
|
{ |
|
"entity_group": "PERSON", |
|
"score": 0.97, |
|
"word": "İlham Əliyev", |
|
"start": 34, |
|
"end": 46 |
|
}, |
|
{ |
|
"entity_group": "LOCATION", |
|
"score": 0.95, |
|
"word": "Bakı", |
|
"start": 0, |
|
"end": 4 |
|
} |
|
] |
|
``` |
|
|
|
## Training Details |
|
|
|
- **Training Data**: This model was fine-tuned on the [Azerbaijani NER Dataset](https://huggingface.co./datasets/LocalDoc/azerbaijani-ner-dataset) with 25 entity types. |
|
- **Training Framework**: Hugging Face `transformers` |
|
- **Optimizer**: AdamW |
|
- **Epochs**: 3 |
|
- **Batch Size**: 64 |
|
- **Evaluation Metric**: F1-score |
|
|
|
## Limitations |
|
|
|
- The model is trained specifically for the Azerbaijani language and may not generalize well to other languages. |
|
- Certain rare entities may be misclassified due to limited training data in those categories. |
|
|
|
## Citation |
|
|
|
If you use this model in your research or application, please consider citing: |
|
|
|
``` |
|
@model{ismats_mbert_az_ner_2024, |
|
title={mBERT Azerbaijani NER Model}, |
|
author={Ismat Samadov}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
url={https://huggingface.co./IsmatS/mbert-az-ner} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
This model is available under the [MIT License](https://opensource.org/licenses/MIT). |