Edit model card

xlsr300m_cv_8.0_nl

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F

model_id = "Iskaj/xlsr300m_cv_8.0_nl"

sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True))

sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()

model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)

inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
  logits = model(**inputs).logits
  predicted_ids = torch.argmax(logits, dim=-1)
  transcription = processor.batch_decode(predicted_ids)

transcription[0].lower()
#'het kontine schip lag aangemeert in de aven'
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Iskaj/xlsr300m_cv_8.0_nl

Evaluation results