metadata
language: en
license: apache-2.0
library_name: transformers
SQFT Fine-tuned Model: sqft-sparsepeft-phi-3-mini-4k-30-math-heu
- Base Model: IntelLabs/sqft-phi-3-mini-4k-30-base
- Sparsity: 30%
- Quantization: No
- Finetune Method: SQFT + SparsePEFT
- Finetune data: 10K instruction-following math reasoning training dataset from LLM-Adapters (math_10k.json)
- Sub-Adapter: Heuristic
Evaluation
git clone https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.git haaml && cd haaml/SQFT
MODEL_NAME=IntelLabs/sqft-sparsepeft-phi-3-mini-4k-30-math-heu
OUTPUT_DIR=./results
python eval/evaluate_math.py --base_model_path ${MODEL_NAME} --output_dir ${OUTPUT_DIR}
Refer to our repo for the environment information to run this command.
Model Sources
- Repository: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT
- Paper: SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Citation
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
License
Apache-2.0