jinjieyuan's picture
Update README.md
06d64cb verified
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Fine-tuned Model: sqft-qa-sparsepeft-phi-3-mini-4k-50-gptq-math-heu
- Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base-gptq](https://huggingface.co./IntelLabs/sqft-phi-3-mini-4k-50-base-gptq)
- Sparsity: 50%
- Quantization: INT4 (GPTQ)
- Finetune Method: SQFT + QA-SparsePEFT
- Finetune data: 10K instruction-following math reasoning training dataset from [LLM-Adapters](https://github.com/AGI-Edgerunners/LLM-Adapters) ([math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json))
- Sub-Adapter: Heuristic
### Evaluation
```bash
git clone https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.git haaml && cd haaml/SQFT
MODEL_NAME=IntelLabs/sqft-qa-sparsepeft-phi-3-mini-4k-50-gptq-math-heu
OUTPUT_DIR=./results
python eval/evaluate_math.py --base_model_path ${MODEL_NAME} --output_dir ${OUTPUT_DIR}
```
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command.
## Model Sources
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
**Paper:**
- [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
## Citation
```bash
@inproceedings{munoz-etal-2024-sqft,
title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models",
author = "Munoz, Juan Pablo and
Yuan, Jinjie and
Jain, Nilesh",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.749",
pages = "12817--12832",
}
```
## License
Apache-2.0