|
--- |
|
language: en |
|
license: apache-2.0 |
|
library_name: transformers |
|
--- |
|
|
|
# SQFT Fine-tuned Model: sqft-qa-sparsepeft-phi-3-mini-4k-50-gptq-math-heu |
|
|
|
- Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base-gptq](https://huggingface.co./IntelLabs/sqft-phi-3-mini-4k-50-base-gptq) |
|
- Sparsity: 50% |
|
- Quantization: INT4 (GPTQ) |
|
- Finetune Method: SQFT + QA-SparsePEFT |
|
- Finetune data: 10K instruction-following math reasoning training dataset from [LLM-Adapters](https://github.com/AGI-Edgerunners/LLM-Adapters) ([math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json)) |
|
- Sub-Adapter: Heuristic |
|
|
|
### Evaluation |
|
|
|
```bash |
|
git clone https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.git haaml && cd haaml/SQFT |
|
|
|
MODEL_NAME=IntelLabs/sqft-qa-sparsepeft-phi-3-mini-4k-50-gptq-math-heu |
|
OUTPUT_DIR=./results |
|
python eval/evaluate_math.py --base_model_path ${MODEL_NAME} --output_dir ${OUTPUT_DIR} |
|
``` |
|
|
|
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. |
|
|
|
## Model Sources |
|
|
|
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) |
|
|
|
**Paper:** |
|
- [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) |
|
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372) |
|
|
|
## Citation |
|
|
|
```bash |
|
@inproceedings{munoz-etal-2024-sqft, |
|
title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models", |
|
author = "Munoz, Juan Pablo and |
|
Yuan, Jinjie and |
|
Jain, Nilesh", |
|
editor = "Al-Onaizan, Yaser and |
|
Bansal, Mohit and |
|
Chen, Yun-Nung", |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", |
|
month = nov, |
|
year = "2024", |
|
address = "Miami, Florida, USA", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2024.findings-emnlp.749", |
|
pages = "12817--12832", |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |