jinjieyuan's picture
Update README.md
32dea37 verified
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Base Model: sqft-mistral-7b-v0.3-50-base-gptq
- Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 50%
- Quantization: GPTQ-INT4
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
## How to get this model
Refer to the commands in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh).
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
```
## Acknowledgement
Thanks to the sparse algorithm [Wanda]((https://arxiv.org/abs/2306.11695)) and the quantization method [GPTQ](https://arxiv.org/abs/2210.17323).
## License
Apache-2.0