guihu's picture
Update README.md
729447b verified
|
raw
history blame
2.89 kB
---
license: mit
datasets:
- web_nlg
language:
- en
---
# Model card for Inria-CEDAR/FactSpotter-DeBERTaV3-Large
## Model description
This model is related to the paper **"FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation"**.
Given a triple of format "subject | predicate | object" and a text, the model determines if the triple is present in the text.
Different from the paper using ELECTRA, this model is finetuned on DeBERTaV3.
## How to use the model
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokenizer):
tokenized_cls_input = predicate_cls_tokenizer(input_strings, truncation=True, padding=True,
return_token_type_ids=True)
input_ids = torch.Tensor(tokenized_cls_input['input_ids']).long().to(torch.device("cuda"))
token_type_ids = torch.Tensor(tokenized_cls_input['token_type_ids']).long().to(torch.device("cuda"))
attention_mask = torch.Tensor(tokenized_cls_input['attention_mask']).long().to(torch.device("cuda"))
prev_cls_output = predicate_cls_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
softmax_cls_output = torch.softmax(prev_cls_output.logits, dim=1, )
return softmax_cls_output
tokenizer = AutoTokenizer.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Large")
model = AutoModelForSequenceClassification.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Large")
# pairs of texts (as premises) and triples (as hypotheses)
cls_texts = [("the aarhus is the airport of aarhus, denmark", "aarhus airport | city served | aarhus, denmark"),
("aarhus airport is 25.0 metres above the sea level", "aarhus airport | elevation above the sea level | 1174")]
cls_scores = sentence_cls_score(cls_texts, model, tokenizer)
# Dimensions: 0-entailment, 1-neutral, 2-contradiction
label_names = ["entailment", "neutral", "contradiction"]
```
## Citation
If the model is useful to you, please cite the paper
```
@inproceedings{zhang:hal-04257838,
TITLE = {{FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation}},
AUTHOR = {Zhang, Kun and Balalau, Oana and Manolescu, Ioana},
URL = {https://hal.science/hal-04257838},
BOOKTITLE = {{Findings of EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing}},
ADDRESS = {Singapore, Singapore},
YEAR = {2023},
MONTH = Dec,
KEYWORDS = {Graph-to-Text Generation ; Factual Faithfulness ; Constrained Text Generation},
PDF = {https://hal.science/hal-04257838/file/_EMNLP_2023__Evaluating_the_Factual_Faithfulness_of_Graph_to_Text_Generation_Camera.pdf},
HAL_ID = {hal-04257838},
HAL_VERSION = {v1},
}
```
## Questions
If you have some questions, please contact through my email [email protected] or [email protected]