Edit model card

TODO: Name of Model

TODO: Description

Model Description

TODO: Add relevant content

(0) Base Transformer Type: RobertaModel

(1) Pooling mean

Usage (Sentence-Transformers)

Using this model becomes more convenient when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence"]

model = SentenceTransformer(TODO)
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

from transformers import AutoTokenizer, AutoModel
import torch

# The next step is optional if you want your own pooling function.
# Max Pooling - Take the max value over time for every dimension. 
def max_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    token_embeddings[input_mask_expanded == 0] = -1e9  # Set padding tokens to large negative value
    max_over_time = torch.max(token_embeddings, 1)[0]
    return max_over_time

# Sentences we want sentence embeddings for
sentences = ['This is an example sentence']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained(TODO)
model = AutoModel.from_pretrained(TODO)

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt'))

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

TODO: Training Procedure

TODO: Evaluation Results

TODO: Citing & Authors

Downloads last month
29
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.