|
--- |
|
base_model: Deci/DeciLM-7B |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model-index: |
|
- name: DeciLM-7B |
|
results: [] |
|
model_creator: Deci |
|
model_name: DeciLM-7B |
|
model_type: deci |
|
prompt_template: | |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
quantized_by: Inferless |
|
tags: |
|
- finetune |
|
- vllm |
|
- GPTQ |
|
- Deci |
|
pipeline_tag: text-generation |
|
--- |
|
<!-- markdownlint-disable MD041 --> |
|
|
|
<!-- header start --> |
|
<!-- 200823 --> |
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://pbs.twimg.com/profile_banners/1633782755669708804/1678359514/1500x500" alt="Inferless" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;">Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.</p> |
|
</div> |
|
<!-- <div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> --> |
|
</div> |
|
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;"><a href="https://0ooatrmbp25.typeform.com/to/nzuhQtba"><b>Join Private Beta</b></a></p></div> |
|
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Go through <a href="https://tutorials.inferless.com/deploy-deci-7b-using-inferless">this tutorial</a>, for quickly deploy of <b>DeciLM-7B</b> using Inferless</p></div> |
|
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> |
|
<!-- header end --> |
|
|
|
# DeciLM-7B - GPTQ |
|
- Model creator: [Upstage](https://huggingface.co./Deci) |
|
- Original model: [DeciLM-7B](https://huggingface.co./Deci/DeciLM-7B) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains GPTQ model files for [Deci's DeciLM-7B](https://huggingface.co./Deci/DeciLM-7B). |
|
|
|
### About GPTQ |
|
|
|
GPTQ is a method that compresses the model size and accelerates inference by quantizing weights based on a calibration dataset, aiming to minimize mean squared error in a single post-quantization step. GPTQ achieves both memory efficiency and faster inference. |
|
|
|
It is supported by: |
|
|
|
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ |
|
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) |
|
- [Transformers](https://huggingface.co./docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code |
|
|
|
<!-- description end --> |
|
<!-- repositories-available start --> |
|
|
|
## Shared files, and GPTQ parameters |
|
|
|
Models are released as sharded safetensors files. |
|
|
|
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size | |
|
| ------ | ---- | -- | ----------- | ------- | ---- | |
|
| [main](https://huggingface.co./Inferless/deciLM-7B-GPTQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 5.96 GB |
|
|
|
<!-- README_AWQ.md-provided-files end --> |
|
|
|
<!-- README_AWQ.md-text-generation-webui start --> |
|
|
|
<!-- How to use start --> |
|
## How to use |
|
You will need the following software packages and python libraries: |
|
```json |
|
build: |
|
cuda_version: "12.1.1" |
|
system_packages: |
|
- "libssl-dev" |
|
python_packages: |
|
- "torch==2.1.2" |
|
- "vllm==0.2.6" |
|
- "transformers==4.36.2" |
|
- "accelerate==0.25.0" |
|
``` |
|
|
|
|
|
Here is the code for <b>app.py</b> |
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
class InferlessPythonModel: |
|
def initialize(self): |
|
|
|
self.sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256) |
|
self.llm = LLM(model="Inferless/deciLM-7B-GPTQ", quantization="gptq", dtype="float16") |
|
|
|
def infer(self, inputs): |
|
prompts = inputs["prompt"] |
|
result = self.llm.generate(prompts, self.sampling_params) |
|
result_output = [[[output.outputs[0].text,output.outputs[0].token_ids] for output in result] |
|
|
|
return {'generated_result': result_output[0]} |
|
|
|
def finalize(self): |
|
pass |
|
``` |