bert-base-uncased_08112024T161410

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4679
  • F1: 0.8733
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Rate
No log 0.9942 86 1.5646 0.3444 0.0000
No log 2.0 173 1.1261 0.5492 0.0000
No log 2.9942 259 0.8378 0.6911 0.0000
No log 4.0 346 0.7016 0.7403 0.0001
No log 4.9942 432 0.5643 0.8175 0.0001
0.9953 6.0 519 0.4947 0.8366 0.0001
0.9953 6.9942 605 0.5260 0.8488 0.0001
0.9953 8.0 692 0.6001 0.8525 0.0001
0.9953 8.9942 778 0.4679 0.8733 0.0001
0.9953 10.0 865 0.5398 0.8779 0.0001
0.9953 10.9942 951 0.5633 0.8765 0.0001
0.2162 12.0 1038 0.6918 0.8640 0.0001
0.2162 12.9942 1124 0.7215 0.8725 0.0001
0.2162 14.0 1211 0.7590 0.8755 0.0001
0.2162 14.9942 1297 0.8360 0.8775 0.0001
0.2162 16.0 1384 0.8535 0.8766 0.0001
0.2162 16.9942 1470 0.8997 0.8743 0.0001
0.059 18.0 1557 0.8916 0.8770 0.0001
0.059 18.9942 1643 0.8122 0.8835 0.0000
0.059 20.0 1730 0.8315 0.8852 0.0000
0.059 20.9942 1816 0.8983 0.8783 0.0000
0.059 22.0 1903 0.8399 0.8886 0.0000
0.059 22.9942 1989 0.8251 0.8887 0.0000
0.0109 24.0 2076 0.8765 0.8845 0.0000
0.0109 24.9942 2162 0.8813 0.8844 0.0000
0.0109 26.0 2249 0.8872 0.8850 0.0000
0.0109 26.9942 2335 0.8876 0.8851 0.0000
0.0109 28.0 2422 0.8902 0.8853 0.0000
0.0025 28.9942 2508 0.8904 0.8853 4e-07
0.0025 29.8266 2580 0.8904 0.8853 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
104
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Imkaran/bert-base-uncased_08112024T161410

Finetuned
(2424)
this model