metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Workforce Solutions is our largest reportable segment, contributing 44% of
total operating revenue for 2023.
sentences:
- >-
How much did GameStop Corp's valuation allowances increase during fiscal
2022?
- >-
What percentage of total operating revenue for 2023 was represented by
the Workforce Solutions segment?
- >-
Where are the majority of NIKE's footwear and apparel products
manufactured?
- source_sentence: >-
The effects of actual results differing from our assumptions and the
effects of changing assumptions are considered actuarial gains or losses.
We utilize a mark-to-market approach in recognizing actuarial gains or
losses immediately through earnings upon the annual remeasurement in the
fourth quarter, or on an interim basis as triggering events warrant
remeasurement.
sentences:
- >-
How are the company's postretirement benefit plan actuarial gains or
losses recognized?
- >-
What specific procedures did the auditors perform related to the
Critical Audit Matter of medical care services Incurred but not Reported
(IBNR)?
- What strategies does the company use to manage product costs and supply?
- source_sentence: >-
To improve the in-store shopping experience, the company invested in
wayfinding signage, store refresh packages, self-service lockers, and
enhanced checkout areas, aiming to provide easier navigation and increased
convenience.
sentences:
- >-
What are the expectations the company has for its employees in aligning
with the Code of Conduct?
- >-
What strategies are employed to improve the in-store shopping
experience?
- >-
Where does the 10-K filing direct readers for specifics on legal
proceedings involving the company?
- source_sentence: >-
In 2023, under pre-approved share repurchase programs, The Hershey Company
repurchased shares valued at $27.4 million.
sentences:
- >-
What is the value of shares repurchased under the pre-approved program
as stated in The Hershey Company's 2023 Form 10-K, for the year 2023?
- >-
What critical accounting estimates were identified as having the
greatest potential impact on the financial statements?
- What was the total net sales in fiscal 2022?
- source_sentence: >-
During September 2023, the Company entered into a third amended and
restated revolving credit agreement with Bank of America, N.A., as
administrative agent, swing line lender and a letter of credit issuer and
lender and certain other financial institutions, as lenders thereto (the
'Amended Revolving Credit Agreement'), which provides the Company with
commitments having a maximum aggregate principal amount of $1.25 billion,
effective as of September 5, 2023. The Amended Revolving Credit Agreement
also provides for a potential additional incremental commitment increase
of up to $500.0 million subject to agreement of the lenders. The Amended
Revolving Credit Agreement contains certain financial covenants setting
forth leverage and coverage requirements, and certain other limitations
typical of an investment grade facility, including with respect to liens,
mergers and incurrence of indebtedness. The Amended Revolving Credit
Agreement extends through September 5, 2028.
sentences:
- >-
What constitutes the largest expense in the company's various expense
categories?
- >-
What is the function of the amended revolving credit agreement that the
Company entered into with Bank of America in September 2023?
- What position does Brad D. Smith currently hold?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6617460317460317
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7933333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8365079365079365
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8850793650793651
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6617460317460317
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2644444444444444
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1673015873015873
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08850793650793651
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6617460317460317
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7933333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8365079365079365
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8850793650793651
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7731048434378245
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.737306437389771
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7413478623467549
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.660952380952381
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7880952380952381
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8352380952380952
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8834920634920634
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.660952380952381
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2626984126984127
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16704761904761903
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08834920634920633
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.660952380952381
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7880952380952381
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8352380952380952
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8834920634920634
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7712996524525622
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7355047871000246
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7396551248138244
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6507936507936508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7795238095238095
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.823968253968254
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.873968253968254
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6507936507936508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2598412698412698
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16479365079365077
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08739682539682538
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6507936507936508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7795238095238095
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.823968253968254
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.873968253968254
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7614205489576108
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7255282186948864
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.729844180658852
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6217460317460317
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7541269841269841
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7987301587301587
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8546031746031746
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6217460317460317
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25137566137566136
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15974603174603175
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08546031746031746
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6217460317460317
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7541269841269841
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7987301587301587
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8546031746031746
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7368786132926283
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6994103048626867
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.704308796361143
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5647619047619048
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7026984126984127
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7477777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8012698412698412
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5647619047619048
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2342328042328042
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14955555555555555
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08012698412698412
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5647619047619048
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7026984126984127
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7477777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8012698412698412
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6817715934378692
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6436686192995734
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6495479778469232
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka")
sentences = [
"During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028.",
'What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023?',
'What position does Brad D. Smith currently hold?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6617 |
cosine_accuracy@3 |
0.7933 |
cosine_accuracy@5 |
0.8365 |
cosine_accuracy@10 |
0.8851 |
cosine_precision@1 |
0.6617 |
cosine_precision@3 |
0.2644 |
cosine_precision@5 |
0.1673 |
cosine_precision@10 |
0.0885 |
cosine_recall@1 |
0.6617 |
cosine_recall@3 |
0.7933 |
cosine_recall@5 |
0.8365 |
cosine_recall@10 |
0.8851 |
cosine_ndcg@10 |
0.7731 |
cosine_mrr@10 |
0.7373 |
cosine_map@100 |
0.7413 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.661 |
cosine_accuracy@3 |
0.7881 |
cosine_accuracy@5 |
0.8352 |
cosine_accuracy@10 |
0.8835 |
cosine_precision@1 |
0.661 |
cosine_precision@3 |
0.2627 |
cosine_precision@5 |
0.167 |
cosine_precision@10 |
0.0883 |
cosine_recall@1 |
0.661 |
cosine_recall@3 |
0.7881 |
cosine_recall@5 |
0.8352 |
cosine_recall@10 |
0.8835 |
cosine_ndcg@10 |
0.7713 |
cosine_mrr@10 |
0.7355 |
cosine_map@100 |
0.7397 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6508 |
cosine_accuracy@3 |
0.7795 |
cosine_accuracy@5 |
0.824 |
cosine_accuracy@10 |
0.874 |
cosine_precision@1 |
0.6508 |
cosine_precision@3 |
0.2598 |
cosine_precision@5 |
0.1648 |
cosine_precision@10 |
0.0874 |
cosine_recall@1 |
0.6508 |
cosine_recall@3 |
0.7795 |
cosine_recall@5 |
0.824 |
cosine_recall@10 |
0.874 |
cosine_ndcg@10 |
0.7614 |
cosine_mrr@10 |
0.7255 |
cosine_map@100 |
0.7298 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6217 |
cosine_accuracy@3 |
0.7541 |
cosine_accuracy@5 |
0.7987 |
cosine_accuracy@10 |
0.8546 |
cosine_precision@1 |
0.6217 |
cosine_precision@3 |
0.2514 |
cosine_precision@5 |
0.1597 |
cosine_precision@10 |
0.0855 |
cosine_recall@1 |
0.6217 |
cosine_recall@3 |
0.7541 |
cosine_recall@5 |
0.7987 |
cosine_recall@10 |
0.8546 |
cosine_ndcg@10 |
0.7369 |
cosine_mrr@10 |
0.6994 |
cosine_map@100 |
0.7043 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5648 |
cosine_accuracy@3 |
0.7027 |
cosine_accuracy@5 |
0.7478 |
cosine_accuracy@10 |
0.8013 |
cosine_precision@1 |
0.5648 |
cosine_precision@3 |
0.2342 |
cosine_precision@5 |
0.1496 |
cosine_precision@10 |
0.0801 |
cosine_recall@1 |
0.5648 |
cosine_recall@3 |
0.7027 |
cosine_recall@5 |
0.7478 |
cosine_recall@10 |
0.8013 |
cosine_ndcg@10 |
0.6818 |
cosine_mrr@10 |
0.6437 |
cosine_map@100 |
0.6495 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.7273 |
1 |
0.6707 |
0.7045 |
0.7171 |
0.6067 |
0.7188 |
1.4545 |
2 |
0.6912 |
0.7205 |
0.7302 |
0.6313 |
0.7327 |
2.9091 |
4 |
0.7043 |
0.7298 |
0.7397 |
0.6495 |
0.7413 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}