IlhamEbdesk's picture
Add new SentenceTransformer model.
5fd0460 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:700
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Workforce Solutions is our largest reportable segment, contributing 44% of
      total operating revenue for 2023.
    sentences:
      - >-
        How much did GameStop Corp's valuation allowances increase during fiscal
        2022?
      - >-
        What percentage of total operating revenue for 2023 was represented by
        the Workforce Solutions segment?
      - >-
        Where are the majority of NIKE's footwear and apparel products
        manufactured?
  - source_sentence: >-
      The effects of actual results differing from our assumptions and the
      effects of changing assumptions are considered actuarial gains or losses.
      We utilize a mark-to-market approach in recognizing actuarial gains or
      losses immediately through earnings upon the annual remeasurement in the
      fourth quarter, or on an interim basis as triggering events warrant
      remeasurement.
    sentences:
      - >-
        How are the company's postretirement benefit plan actuarial gains or
        losses recognized?
      - >-
        What specific procedures did the auditors perform related to the
        Critical Audit Matter of medical care services Incurred but not Reported
        (IBNR)?
      - What strategies does the company use to manage product costs and supply?
  - source_sentence: >-
      To improve the in-store shopping experience, the company invested in
      wayfinding signage, store refresh packages, self-service lockers, and
      enhanced checkout areas, aiming to provide easier navigation and increased
      convenience.
    sentences:
      - >-
        What are the expectations the company has for its employees in aligning
        with the Code of Conduct?
      - >-
        What strategies are employed to improve the in-store shopping
        experience?
      - >-
        Where does the 10-K filing direct readers for specifics on legal
        proceedings involving the company?
  - source_sentence: >-
      In 2023, under pre-approved share repurchase programs, The Hershey Company
      repurchased shares valued at $27.4 million.
    sentences:
      - >-
        What is the value of shares repurchased under the pre-approved program
        as stated in The Hershey Company's 2023 Form 10-K, for the year 2023?
      - >-
        What critical accounting estimates were identified as having the
        greatest potential impact on the financial statements?
      - What was the total net sales in fiscal 2022?
  - source_sentence: >-
      During September 2023, the Company entered into a third amended and
      restated revolving credit agreement with Bank of America, N.A., as
      administrative agent, swing line lender and a letter of credit issuer and
      lender and certain other financial institutions, as lenders thereto (the
      'Amended Revolving Credit Agreement'), which provides the Company with
      commitments having a maximum aggregate principal amount of $1.25 billion,
      effective as of September 5, 2023. The Amended Revolving Credit Agreement
      also provides for a potential additional incremental commitment increase
      of up to $500.0 million subject to agreement of the lenders. The Amended
      Revolving Credit Agreement contains certain financial covenants setting
      forth leverage and coverage requirements, and certain other limitations
      typical of an investment grade facility, including with respect to liens,
      mergers and incurrence of indebtedness. The Amended Revolving Credit
      Agreement extends through September 5, 2028.
    sentences:
      - >-
        What constitutes the largest expense in the company's various expense
        categories?
      - >-
        What is the function of the amended revolving credit agreement that the
        Company entered into with Bank of America in September 2023?
      - What position does Brad D. Smith currently hold?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6617460317460317
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7933333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8365079365079365
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8850793650793651
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6617460317460317
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2644444444444444
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1673015873015873
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08850793650793651
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6617460317460317
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7933333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8365079365079365
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8850793650793651
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7731048434378245
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.737306437389771
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7413478623467549
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.660952380952381
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7880952380952381
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8352380952380952
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8834920634920634
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.660952380952381
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2626984126984127
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16704761904761903
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08834920634920633
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.660952380952381
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7880952380952381
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8352380952380952
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8834920634920634
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7712996524525622
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7355047871000246
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7396551248138244
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6507936507936508
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7795238095238095
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.823968253968254
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.873968253968254
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6507936507936508
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2598412698412698
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16479365079365077
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08739682539682538
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6507936507936508
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7795238095238095
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.823968253968254
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.873968253968254
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7614205489576108
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7255282186948864
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.729844180658852
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6217460317460317
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7541269841269841
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7987301587301587
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8546031746031746
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6217460317460317
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25137566137566136
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15974603174603175
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08546031746031746
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6217460317460317
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7541269841269841
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7987301587301587
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8546031746031746
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7368786132926283
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6994103048626867
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.704308796361143
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5647619047619048
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7026984126984127
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7477777777777778
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8012698412698412
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5647619047619048
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2342328042328042
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14955555555555555
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08012698412698412
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5647619047619048
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7026984126984127
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7477777777777778
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8012698412698412
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6817715934378692
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6436686192995734
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6495479778469232
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028.",
    'What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023?',
    'What position does Brad D. Smith currently hold?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6617
cosine_accuracy@3 0.7933
cosine_accuracy@5 0.8365
cosine_accuracy@10 0.8851
cosine_precision@1 0.6617
cosine_precision@3 0.2644
cosine_precision@5 0.1673
cosine_precision@10 0.0885
cosine_recall@1 0.6617
cosine_recall@3 0.7933
cosine_recall@5 0.8365
cosine_recall@10 0.8851
cosine_ndcg@10 0.7731
cosine_mrr@10 0.7373
cosine_map@100 0.7413

Information Retrieval

Metric Value
cosine_accuracy@1 0.661
cosine_accuracy@3 0.7881
cosine_accuracy@5 0.8352
cosine_accuracy@10 0.8835
cosine_precision@1 0.661
cosine_precision@3 0.2627
cosine_precision@5 0.167
cosine_precision@10 0.0883
cosine_recall@1 0.661
cosine_recall@3 0.7881
cosine_recall@5 0.8352
cosine_recall@10 0.8835
cosine_ndcg@10 0.7713
cosine_mrr@10 0.7355
cosine_map@100 0.7397

Information Retrieval

Metric Value
cosine_accuracy@1 0.6508
cosine_accuracy@3 0.7795
cosine_accuracy@5 0.824
cosine_accuracy@10 0.874
cosine_precision@1 0.6508
cosine_precision@3 0.2598
cosine_precision@5 0.1648
cosine_precision@10 0.0874
cosine_recall@1 0.6508
cosine_recall@3 0.7795
cosine_recall@5 0.824
cosine_recall@10 0.874
cosine_ndcg@10 0.7614
cosine_mrr@10 0.7255
cosine_map@100 0.7298

Information Retrieval

Metric Value
cosine_accuracy@1 0.6217
cosine_accuracy@3 0.7541
cosine_accuracy@5 0.7987
cosine_accuracy@10 0.8546
cosine_precision@1 0.6217
cosine_precision@3 0.2514
cosine_precision@5 0.1597
cosine_precision@10 0.0855
cosine_recall@1 0.6217
cosine_recall@3 0.7541
cosine_recall@5 0.7987
cosine_recall@10 0.8546
cosine_ndcg@10 0.7369
cosine_mrr@10 0.6994
cosine_map@100 0.7043

Information Retrieval

Metric Value
cosine_accuracy@1 0.5648
cosine_accuracy@3 0.7027
cosine_accuracy@5 0.7478
cosine_accuracy@10 0.8013
cosine_precision@1 0.5648
cosine_precision@3 0.2342
cosine_precision@5 0.1496
cosine_precision@10 0.0801
cosine_recall@1 0.5648
cosine_recall@3 0.7027
cosine_recall@5 0.7478
cosine_recall@10 0.8013
cosine_ndcg@10 0.6818
cosine_mrr@10 0.6437
cosine_map@100 0.6495

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.7273 1 0.6707 0.7045 0.7171 0.6067 0.7188
1.4545 2 0.6912 0.7205 0.7302 0.6313 0.7327
2.9091 4 0.7043 0.7298 0.7397 0.6495 0.7413
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}