gemma-2b-fine-tuned / README.md
Ikeofai's picture
Update README.md
698e056 verified
metadata
license: gemma
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: google/gemma-2b
model-index:
  - name: gemma-2b-fine-tuned
    results: []
pipeline_tag: question-answering

gemma-2b-fine-tuned for learning Python Programming easy

This model is a fine-tuned version of google/gemma-2b on a very small dataset of 205 carefully datapoints on Python programming. It achieves the following results on the evaluation set:

  • Loss: 1.2177

Model description

This model experiments with fine tuning a large language model for a small task which is teaching Python in simple terms

Intended uses & limitations

The model is intended to be used experimentally, it would require more data points and training to work much better

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
1.756 0.19 2 1.6592
1.4272 0.39 4 1.6572
1.6918 0.58 6 1.6529
1.8009 0.77 8 1.6469
1.674 0.96 10 1.6384
1.5397 1.16 12 1.6273
1.6255 1.35 14 1.6131
1.5575 1.54 16 1.5947
1.5248 1.73 18 1.5750
1.5811 1.93 20 1.5545
1.7426 2.12 22 1.5339
1.5397 2.31 24 1.5140
1.421 2.51 26 1.4953
1.3699 2.7 28 1.4778
1.3421 2.89 30 1.4616
1.5048 3.08 32 1.4483
1.3779 3.28 34 1.4362
1.435 3.47 36 1.4247
1.2924 3.66 38 1.4130
1.375 3.86 40 1.4011
1.3808 4.05 42 1.3894
1.3854 4.24 44 1.3776
1.2755 4.43 46 1.3668
1.1832 4.63 48 1.3568
1.4068 4.82 50 1.3473
1.197 5.01 52 1.3383
1.396 5.2 54 1.3300
1.0756 5.4 56 1.3219
1.164 5.59 58 1.3140
1.2238 5.78 60 1.3067
1.2795 5.98 62 1.2999
1.2425 6.17 64 1.2940
1.1914 6.36 66 1.2884
1.2129 6.55 68 1.2832
1.0642 6.75 70 1.2783
1.1238 6.94 72 1.2736
1.0442 7.13 74 1.2692
1.1614 7.33 76 1.2650
1.2674 7.52 78 1.2613
0.973 7.71 80 1.2579
1.1108 7.9 82 1.2551
1.2114 8.1 84 1.2519
0.9327 8.29 86 1.2487
1.0495 8.48 88 1.2459
1.1297 8.67 90 1.2434
1.1777 8.87 92 1.2413
0.9277 9.06 94 1.2394
1.0063 9.25 96 1.2376
1.0652 9.45 98 1.2359
1.0928 9.64 100 1.2342
1.0611 9.83 102 1.2329
0.9749 10.02 104 1.2314
0.9305 10.22 106 1.2300
0.9944 10.41 108 1.2289
1.1229 10.6 110 1.2277
1.1502 10.8 112 1.2269
0.8728 10.99 114 1.2261
0.9504 11.18 116 1.2253
1.0989 11.37 118 1.2242
0.9485 11.57 120 1.2235
1.0335 11.76 122 1.2227
1.0332 11.95 124 1.2222
0.8178 12.14 126 1.2215
1.0058 12.34 128 1.2208
1.034 12.53 130 1.2202
0.9451 12.72 132 1.2197
0.9163 12.92 134 1.2193
1.173 13.11 136 1.2190
1.0758 13.3 138 1.2185
0.9012 13.49 140 1.2184
0.9099 13.69 142 1.2180
1.0 13.88 144 1.2180
1.0032 14.07 146 1.2179
0.991 14.27 148 1.2177
0.8836 14.46 150 1.2177

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2