|
--- |
|
datasets: |
|
- IbrahimSalah/The_Arabic_News_speech_Corpus_Dataset |
|
language: |
|
- ar |
|
tags: |
|
- Arabic |
|
- MSA |
|
- Speech |
|
- Syllables |
|
- Wav2vec |
|
- ASR |
|
--- |
|
# Arabic syllables recognition with tashkeel |
|
**paper DOI** : https://doi.org/10.60161/2521-001-001-006 \ |
|
This is fine tuned wav2vec2 model to recognize arabic syllables from speech. |
|
The model was trained on Modern standard arabic dataset .\ |
|
5-gram language model is available with the model. |
|
|
|
To try it out : |
|
|
|
``` |
|
!pip install datasets transformers |
|
!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode |
|
``` |
|
|
|
``` |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
from transformers import Wav2Vec2ProcessorWithLM |
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Syllables_final_Large') |
|
model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Syllables_final_Large") |
|
``` |
|
``` |
|
import pandas as pd |
|
dftest = pd.DataFrame(columns=['audio']) |
|
import datasets |
|
from datasets import Dataset |
|
path ='/content/908-33.wav' |
|
dftest['audio']=[path] ## audio path |
|
dataset = Dataset.from_pandas(dftest) |
|
``` |
|
``` |
|
import torch |
|
import torchaudio |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["audio"]) |
|
print(sampling_rate) |
|
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. |
|
batch["audio"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
``` |
|
``` |
|
import numpy as np |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
test_dataset = dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values).logits |
|
print(logits.numpy().shape) |
|
|
|
transcription = processor.batch_decode(logits.numpy()).text |
|
print("Prediction:",transcription[0]) |
|
``` |
|
|
|
|
|
# You can then convert the syllables to full word using our fine tuned mT5 model[IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5] |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@article{2024SyllableBasedAS, |
|
title={Syllable-Based Arabic Speech Recognition Using Wav2Vec}, |
|
author={إبراهيم عبدالعال and مصطفى الشافعي and محمد عبدالواحد}, |
|
journal={مجلة اللغات الحاسوبية والمعالجة الآلية للغة العربية}, |
|
year={2024}, |
|
url={https://api.semanticscholar.org/CorpusID:269151543} |
|
} |