Yuan-embedding-1.0 / README.md
IEIT-Yuan's picture
Update README.md
7cb0bd1 verified
metadata
model-index:
  - name: Yuan-embedding-1.0
    results:
      - dataset:
          config: default
          name: MTEB AFQMC (default)
          revision: None
          split: validation
          type: C-MTEB/AFQMC
        metrics:
          - type: cosine_pearson
            value: 56.398777687800596
          - type: cosine_spearman
            value: 60.2976392017466
          - type: manhattan_pearson
            value: 58.34432755369896
          - type: manhattan_spearman
            value: 59.633715024557176
          - type: euclidean_pearson
            value: 58.33199470250656
          - type: euclidean_spearman
            value: 59.633393360323595
          - type: main_score
            value: 60.2976392017466
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB ATEC (default)
          revision: None
          split: test
          type: C-MTEB/ATEC
        metrics:
          - type: cosine_pearson
            value: 56.418711941754694
          - type: cosine_spearman
            value: 58.49782527525838
          - type: manhattan_pearson
            value: 62.05335398720773
          - type: manhattan_spearman
            value: 58.18176592298454
          - type: euclidean_pearson
            value: 62.06479799788818
          - type: euclidean_spearman
            value: 58.18182671971488
          - type: main_score
            value: 58.49782527525838
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 46.656000000000006
          - type: accuracy_stderr
            value: 1.1704631561907444
          - type: f1
            value: 45.75911645865614
          - type: f1_stderr
            value: 1.323301406018355
          - type: main_score
            value: 46.656000000000006
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: validation
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 45.84599999999999
          - type: accuracy_stderr
            value: 1.0539468677310073
          - type: f1
            value: 45.03273670979488
          - type: f1_stderr
            value: 1.00417269917164
          - type: main_score
            value: 45.84599999999999
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BQ (default)
          revision: None
          split: test
          type: C-MTEB/BQ
        metrics:
          - type: cosine_pearson
            value: 71.33099160181597
          - type: cosine_spearman
            value: 73.06963287952199
          - type: manhattan_pearson
            value: 70.65314181752566
          - type: manhattan_spearman
            value: 72.34604440078336
          - type: euclidean_pearson
            value: 70.67624292501411
          - type: euclidean_spearman
            value: 72.3597691712343
          - type: main_score
            value: 73.06963287952199
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB CLSClusteringP2P (default)
          revision: None
          split: test
          type: C-MTEB/CLSClusteringP2P
        metrics:
          - type: v_measure
            value: 53.79921861868626
          - type: v_measure_std
            value: 2.073016548125077
          - type: main_score
            value: 53.79921861868626
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CLSClusteringS2S (default)
          revision: None
          split: test
          type: C-MTEB/CLSClusteringS2S
        metrics:
          - type: v_measure
            value: 46.22496957569903
          - type: v_measure_std
            value: 1.4660184854965337
          - type: main_score
            value: 46.22496957569903
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CMedQAv1-reranking (default)
          revision: None
          split: test
          type: C-MTEB/CMedQAv1-reranking
        metrics:
          - type: map
            value: 90.00883554654739
          - type: mrr
            value: 92.02547619047618
          - type: main_score
            value: 90.00883554654739
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CMedQAv2-reranking (default)
          revision: None
          split: test
          type: C-MTEB/CMedQAv2-reranking
        metrics:
          - type: map
            value: 92.47561424216632
          - type: mrr
            value: 94.60039682539681
          - type: main_score
            value: 92.47561424216632
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: map_at_1
            value: 29.935000000000002
          - type: map_at_10
            value: 44.143
          - type: map_at_100
            value: 45.999
          - type: map_at_1000
            value: 46.084
          - type: map_at_3
            value: 39.445
          - type: map_at_5
            value: 42.218
          - type: mrr_at_1
            value: 44.711
          - type: mrr_at_10
            value: 53.88699999999999
          - type: mrr_at_100
            value: 54.813
          - type: mrr_at_1000
            value: 54.834
          - type: mrr_at_3
            value: 51.1
          - type: mrr_at_5
            value: 52.827
          - type: ndcg_at_1
            value: 44.711
          - type: ndcg_at_10
            value: 51.471999999999994
          - type: ndcg_at_100
            value: 58.362
          - type: ndcg_at_1000
            value: 59.607
          - type: ndcg_at_3
            value: 45.558
          - type: ndcg_at_5
            value: 48.345
          - type: precision_at_1
            value: 44.711
          - type: precision_at_10
            value: 11.1
          - type: precision_at_100
            value: 1.6650000000000003
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 25.306
          - type: precision_at_5
            value: 18.404999999999998
          - type: recall_at_1
            value: 29.935000000000002
          - type: recall_at_10
            value: 63.366
          - type: recall_at_100
            value: 91.375
          - type: recall_at_1000
            value: 99.167
          - type: recall_at_3
            value: 45.888
          - type: recall_at_5
            value: 54.169
          - type: main_score
            value: 51.471999999999994
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Cmnli (default)
          revision: None
          split: validation
          type: C-MTEB/CMNLI
        metrics:
          - type: cos_sim_accuracy
            value: 80.3968731208659
          - type: cos_sim_accuracy_threshold
            value: 86.61384582519531
          - type: cos_sim_ap
            value: 88.21894124132636
          - type: cos_sim_f1
            value: 81.67308750687947
          - type: cos_sim_f1_threshold
            value: 86.04017496109009
          - type: cos_sim_precision
            value: 77.1630615640599
          - type: cos_sim_recall
            value: 86.7430441898527
          - type: dot_accuracy
            value: 67.7931449188214
          - type: dot_accuracy_threshold
            value: 92027.47802734375
          - type: dot_ap
            value: 75.73048600318765
          - type: dot_f1
            value: 71.64554512914772
          - type: dot_f1_threshold
            value: 83535.70556640625
          - type: dot_precision
            value: 61.1056105610561
          - type: dot_recall
            value: 86.57937806873977
          - type: euclidean_accuracy
            value: 78.52074564040889
          - type: euclidean_accuracy_threshold
            value: 1688.486671447754
          - type: euclidean_ap
            value: 86.40643721988414
          - type: euclidean_f1
            value: 79.97822536744692
          - type: euclidean_f1_threshold
            value: 1748.1914520263672
          - type: euclidean_precision
            value: 74.83700081499592
          - type: euclidean_recall
            value: 85.87795183539865
          - type: manhattan_accuracy
            value: 78.59290438965725
          - type: manhattan_accuracy_threshold
            value: 57066.162109375
          - type: manhattan_ap
            value: 86.38300352696045
          - type: manhattan_f1
            value: 79.84587391630097
          - type: manhattan_f1_threshold
            value: 59686.376953125
          - type: manhattan_precision
            value: 73.62810896170548
          - type: manhattan_recall
            value: 87.21066167874679
          - type: max_accuracy
            value: 80.3968731208659
          - type: max_ap
            value: 88.21894124132636
          - type: max_f1
            value: 81.67308750687947
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CovidRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: map_at_1
            value: 85.485
          - type: map_at_10
            value: 91.135
          - type: map_at_100
            value: 91.16199999999999
          - type: map_at_1000
            value: 91.16300000000001
          - type: map_at_3
            value: 90.499
          - type: map_at_5
            value: 90.91
          - type: mrr_at_1
            value: 85.88
          - type: mrr_at_10
            value: 91.133
          - type: mrr_at_100
            value: 91.16
          - type: mrr_at_1000
            value: 91.161
          - type: mrr_at_3
            value: 90.551
          - type: mrr_at_5
            value: 90.904
          - type: ndcg_at_1
            value: 85.88
          - type: ndcg_at_10
            value: 93.163
          - type: ndcg_at_100
            value: 93.282
          - type: ndcg_at_1000
            value: 93.309
          - type: ndcg_at_3
            value: 91.943
          - type: ndcg_at_5
            value: 92.637
          - type: precision_at_1
            value: 85.88
          - type: precision_at_10
            value: 10.032
          - type: precision_at_100
            value: 1.008
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 32.315
          - type: precision_at_5
            value: 19.747
          - type: recall_at_1
            value: 85.485
          - type: recall_at_10
            value: 99.262
          - type: recall_at_100
            value: 99.789
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 95.96900000000001
          - type: recall_at_5
            value: 97.682
          - type: main_score
            value: 93.163
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: map_at_1
            value: 27.29
          - type: map_at_10
            value: 82.832
          - type: map_at_100
            value: 85.482
          - type: map_at_1000
            value: 85.52
          - type: map_at_3
            value: 57.964000000000006
          - type: map_at_5
            value: 72.962
          - type: mrr_at_1
            value: 92.35
          - type: mrr_at_10
            value: 94.77499999999999
          - type: mrr_at_100
            value: 94.825
          - type: mrr_at_1000
            value: 94.827
          - type: mrr_at_3
            value: 94.50800000000001
          - type: mrr_at_5
            value: 94.688
          - type: ndcg_at_1
            value: 92.35
          - type: ndcg_at_10
            value: 89.432
          - type: ndcg_at_100
            value: 91.813
          - type: ndcg_at_1000
            value: 92.12
          - type: ndcg_at_3
            value: 88.804
          - type: ndcg_at_5
            value: 87.681
          - type: precision_at_1
            value: 92.35
          - type: precision_at_10
            value: 42.32
          - type: precision_at_100
            value: 4.812
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 79.367
          - type: precision_at_5
            value: 66.86999999999999
          - type: recall_at_1
            value: 27.29
          - type: recall_at_10
            value: 90.093
          - type: recall_at_100
            value: 97.916
          - type: recall_at_1000
            value: 99.40299999999999
          - type: recall_at_3
            value: 59.816
          - type: recall_at_5
            value: 76.889
          - type: main_score
            value: 89.432
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: map_at_1
            value: 55.2
          - type: map_at_10
            value: 65.767
          - type: map_at_100
            value: 66.208
          - type: map_at_1000
            value: 66.219
          - type: map_at_3
            value: 63.1
          - type: map_at_5
            value: 64.865
          - type: mrr_at_1
            value: 55.2
          - type: mrr_at_10
            value: 65.767
          - type: mrr_at_100
            value: 66.208
          - type: mrr_at_1000
            value: 66.219
          - type: mrr_at_3
            value: 63.1
          - type: mrr_at_5
            value: 64.865
          - type: ndcg_at_1
            value: 55.2
          - type: ndcg_at_10
            value: 70.875
          - type: ndcg_at_100
            value: 72.931
          - type: ndcg_at_1000
            value: 73.2
          - type: ndcg_at_3
            value: 65.526
          - type: ndcg_at_5
            value: 68.681
          - type: precision_at_1
            value: 55.2
          - type: precision_at_10
            value: 8.690000000000001
          - type: precision_at_100
            value: 0.963
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.166999999999998
          - type: precision_at_5
            value: 16.02
          - type: recall_at_1
            value: 55.2
          - type: recall_at_10
            value: 86.9
          - type: recall_at_100
            value: 96.3
          - type: recall_at_1000
            value: 98.4
          - type: recall_at_3
            value: 72.5
          - type: recall_at_5
            value: 80.10000000000001
          - type: main_score
            value: 70.875
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB IFlyTek (default)
          revision: None
          split: validation
          type: C-MTEB/IFlyTek-classification
        metrics:
          - type: accuracy
            value: 46.95652173913043
          - type: accuracy_stderr
            value: 0.8816372193041417
          - type: f1
            value: 38.870262239396496
          - type: f1_stderr
            value: 1.1248427890133785
          - type: main_score
            value: 46.95652173913043
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB JDReview (default)
          revision: None
          split: test
          type: C-MTEB/JDReview-classification
        metrics:
          - type: accuracy
            value: 87.18574108818011
          - type: accuracy_stderr
            value: 1.828763099528331
          - type: ap
            value: 56.516251295719414
          - type: ap_stderr
            value: 3.3789918068717895
          - type: f1
            value: 82.04209146803106
          - type: f1_stderr
            value: 2.005027201503808
          - type: main_score
            value: 87.18574108818011
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB LCQMC (default)
          revision: None
          split: test
          type: C-MTEB/LCQMC
        metrics:
          - type: cosine_pearson
            value: 72.67112275922743
          - type: cosine_spearman
            value: 78.44376213964316
          - type: manhattan_pearson
            value: 77.51766838932976
          - type: manhattan_spearman
            value: 78.02885255071602
          - type: euclidean_pearson
            value: 77.5292348074114
          - type: euclidean_spearman
            value: 78.04277103380235
          - type: main_score
            value: 78.44376213964316
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB MMarcoReranking (default)
          revision: None
          split: dev
          type: C-MTEB/Mmarco-reranking
        metrics:
          - type: map
            value: 37.021133625346174
          - type: mrr
            value: 35.81428571428572
          - type: main_score
            value: 37.021133625346174
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: map_at_1
            value: 69.624
          - type: map_at_10
            value: 78.764
          - type: map_at_100
            value: 79.038
          - type: map_at_1000
            value: 79.042
          - type: map_at_3
            value: 76.846
          - type: map_at_5
            value: 78.106
          - type: mrr_at_1
            value: 71.905
          - type: mrr_at_10
            value: 79.268
          - type: mrr_at_100
            value: 79.508
          - type: mrr_at_1000
            value: 79.512
          - type: mrr_at_3
            value: 77.60000000000001
          - type: mrr_at_5
            value: 78.701
          - type: ndcg_at_1
            value: 71.905
          - type: ndcg_at_10
            value: 82.414
          - type: ndcg_at_100
            value: 83.59
          - type: ndcg_at_1000
            value: 83.708
          - type: ndcg_at_3
            value: 78.803
          - type: ndcg_at_5
            value: 80.94
          - type: precision_at_1
            value: 71.905
          - type: precision_at_10
            value: 9.901
          - type: precision_at_100
            value: 1.048
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.479
          - type: precision_at_5
            value: 18.828
          - type: recall_at_1
            value: 69.624
          - type: recall_at_10
            value: 93.149
          - type: recall_at_100
            value: 98.367
          - type: recall_at_1000
            value: 99.29299999999999
          - type: recall_at_3
            value: 83.67599999999999
          - type: recall_at_5
            value: 88.752
          - type: main_score
            value: 82.414
        task:
          type: Retrieval
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 77.36045729657029
          - type: accuracy_stderr
            value: 0.8944498935111289
          - type: f1
            value: 73.73485209304225
          - type: f1_stderr
            value: 0.8615191738484445
          - type: main_score
            value: 77.36045729657029
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: validation
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 78.16035415641909
          - type: accuracy_stderr
            value: 0.7514724220154535
          - type: f1
            value: 75.32402452596266
          - type: f1_stderr
            value: 0.5969737694527888
          - type: main_score
            value: 78.16035415641909
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 83.31203765971755
          - type: accuracy_stderr
            value: 1.1063564012537301
          - type: f1
            value: 82.81655735858999
          - type: f1_stderr
            value: 0.9643568609098954
          - type: main_score
            value: 83.31203765971755
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: validation
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 83.11362518445647
          - type: accuracy_stderr
            value: 1.252141689154366
          - type: f1
            value: 82.56555569957769
          - type: f1_stderr
            value: 0.858322314243248
          - type: main_score
            value: 83.11362518445647
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedicalRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: map_at_1
            value: 63.1
          - type: map_at_10
            value: 70.816
          - type: map_at_100
            value: 71.368
          - type: map_at_1000
            value: 71.379
          - type: map_at_3
            value: 69.033
          - type: map_at_5
            value: 70.028
          - type: mrr_at_1
            value: 63.4
          - type: mrr_at_10
            value: 70.98400000000001
          - type: mrr_at_100
            value: 71.538
          - type: mrr_at_1000
            value: 71.548
          - type: mrr_at_3
            value: 69.19999999999999
          - type: mrr_at_5
            value: 70.195
          - type: ndcg_at_1
            value: 63.1
          - type: ndcg_at_10
            value: 74.665
          - type: ndcg_at_100
            value: 77.16199999999999
          - type: ndcg_at_1000
            value: 77.408
          - type: ndcg_at_3
            value: 70.952
          - type: ndcg_at_5
            value: 72.776
          - type: precision_at_1
            value: 63.1
          - type: precision_at_10
            value: 8.68
          - type: precision_at_100
            value: 0.9809999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 25.5
          - type: precision_at_5
            value: 16.2
          - type: recall_at_1
            value: 63.1
          - type: recall_at_10
            value: 86.8
          - type: recall_at_100
            value: 98.1
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 76.5
          - type: recall_at_5
            value: 81
          - type: main_score
            value: 74.665
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MultilingualSentiment (default)
          revision: None
          split: validation
          type: C-MTEB/MultilingualSentiment-classification
        metrics:
          - type: accuracy
            value: 75.98
          - type: accuracy_stderr
            value: 0.8634813257969153
          - type: f1
            value: 75.98312901227456
          - type: f1_stderr
            value: 0.9813231777702479
          - type: main_score
            value: 75.98
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Ocnli (default)
          revision: None
          split: validation
          type: C-MTEB/OCNLI
        metrics:
          - type: cos_sim_accuracy
            value: 80.02165674066053
          - type: cos_sim_accuracy_threshold
            value: 84.70024466514587
          - type: cos_sim_ap
            value: 84.5948682253982
          - type: cos_sim_f1
            value: 80.84291187739463
          - type: cos_sim_f1_threshold
            value: 82.62853622436523
          - type: cos_sim_precision
            value: 73.97020157756354
          - type: cos_sim_recall
            value: 89.1235480464625
          - type: dot_accuracy
            value: 71.52138603140227
          - type: dot_accuracy_threshold
            value: 84206.94580078125
          - type: dot_ap
            value: 77.69986172282461
          - type: dot_f1
            value: 74.76467951591216
          - type: dot_f1_threshold
            value: 78842.08984375
          - type: dot_precision
            value: 64.95327102803739
          - type: dot_recall
            value: 88.0675818373812
          - type: euclidean_accuracy
            value: 76.01515971846237
          - type: euclidean_accuracy_threshold
            value: 1818.9674377441406
          - type: euclidean_ap
            value: 80.84369691331835
          - type: euclidean_f1
            value: 78.08988764044943
          - type: euclidean_f1_threshold
            value: 1922.1363067626953
          - type: euclidean_precision
            value: 70.14297729184187
          - type: euclidean_recall
            value: 88.0675818373812
          - type: manhattan_accuracy
            value: 76.12344342176502
          - type: manhattan_accuracy_threshold
            value: 61934.478759765625
          - type: manhattan_ap
            value: 80.8051823205177
          - type: manhattan_f1
            value: 78.21596244131456
          - type: manhattan_f1_threshold
            value: 64840.447998046875
          - type: manhattan_precision
            value: 70.41420118343196
          - type: manhattan_recall
            value: 87.96198521647307
          - type: max_accuracy
            value: 80.02165674066053
          - type: max_ap
            value: 84.5948682253982
          - type: max_f1
            value: 80.84291187739463
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB OnlineShopping (default)
          revision: None
          split: test
          type: C-MTEB/OnlineShopping-classification
        metrics:
          - type: accuracy
            value: 93.63
          - type: accuracy_stderr
            value: 0.7253275122315392
          - type: ap
            value: 91.66092551327398
          - type: ap_stderr
            value: 0.9661774073521741
          - type: f1
            value: 93.61696896914624
          - type: f1_stderr
            value: 0.7232416235078093
          - type: main_score
            value: 93.63
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PAWSX (default)
          revision: None
          split: test
          type: C-MTEB/PAWSX
        metrics:
          - type: cosine_pearson
            value: 27.420084312732477
          - type: cosine_spearman
            value: 36.615019324915316
          - type: manhattan_pearson
            value: 35.38814491527626
          - type: manhattan_spearman
            value: 35.989020517540105
          - type: euclidean_pearson
            value: 35.322828019800475
          - type: euclidean_spearman
            value: 35.93118948093057
          - type: main_score
            value: 36.615019324915316
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB QBQTC (default)
          revision: None
          split: test
          type: C-MTEB/QBQTC
        metrics:
          - type: cosine_pearson
            value: 36.51779732355864
          - type: cosine_spearman
            value: 38.35615142712016
          - type: manhattan_pearson
            value: 31.00096996824444
          - type: manhattan_spearman
            value: 35.22782463612116
          - type: euclidean_pearson
            value: 31.04604995563808
          - type: euclidean_spearman
            value: 35.271420992011485
          - type: main_score
            value: 38.35615142712016
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 60.76376961662733
          - type: cosine_spearman
            value: 65.93112312064913
          - type: manhattan_pearson
            value: 60.18998639945854
          - type: manhattan_spearman
            value: 64.37697612695015
          - type: euclidean_pearson
            value: 60.287759656277814
          - type: euclidean_spearman
            value: 64.37685757691955
          - type: main_score
            value: 65.93112312064913
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSB (default)
          revision: None
          split: test
          type: C-MTEB/STSB
        metrics:
          - type: cosine_pearson
            value: 79.6320389543562
          - type: cosine_spearman
            value: 81.9230633773663
          - type: manhattan_pearson
            value: 80.20746913195181
          - type: manhattan_spearman
            value: 80.43150657863002
          - type: euclidean_pearson
            value: 80.1796408157508
          - type: euclidean_spearman
            value: 80.42930201788549
          - type: main_score
            value: 81.9230633773663
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB T2Reranking (default)
          revision: None
          split: dev
          type: C-MTEB/T2Reranking
        metrics:
          - type: map
            value: 66.67836204644267
          - type: mrr
            value: 76.1707222383424
          - type: main_score
            value: 66.67836204644267
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB T2Retrieval (default)
          revision: None
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: map_at_1
            value: 28.015
          - type: map_at_10
            value: 78.281
          - type: map_at_100
            value: 81.89699999999999
          - type: map_at_1000
            value: 81.95599999999999
          - type: map_at_3
            value: 55.117000000000004
          - type: map_at_5
            value: 67.647
          - type: mrr_at_1
            value: 90.496
          - type: mrr_at_10
            value: 93.132
          - type: mrr_at_100
            value: 93.207
          - type: mrr_at_1000
            value: 93.209
          - type: mrr_at_3
            value: 92.714
          - type: mrr_at_5
            value: 93
          - type: ndcg_at_1
            value: 90.496
          - type: ndcg_at_10
            value: 85.71600000000001
          - type: ndcg_at_100
            value: 89.164
          - type: ndcg_at_1000
            value: 89.71000000000001
          - type: ndcg_at_3
            value: 86.876
          - type: ndcg_at_5
            value: 85.607
          - type: precision_at_1
            value: 90.496
          - type: precision_at_10
            value: 42.398
          - type: precision_at_100
            value: 5.031
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.729
          - type: precision_at_5
            value: 63.522
          - type: recall_at_1
            value: 28.015
          - type: recall_at_10
            value: 84.83000000000001
          - type: recall_at_100
            value: 95.964
          - type: recall_at_1000
            value: 98.67399999999999
          - type: recall_at_3
            value: 56.898
          - type: recall_at_5
            value: 71.163
          - type: main_score
            value: 85.71600000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TNews (default)
          revision: None
          split: validation
          type: C-MTEB/TNews-classification
        metrics:
          - type: accuracy
            value: 51.702999999999996
          - type: accuracy_stderr
            value: 0.8183526134863877
          - type: f1
            value: 50.35330734766769
          - type: f1_stderr
            value: 0.740275098366631
          - type: main_score
            value: 51.702999999999996
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringP2P (default)
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringP2P
        metrics:
          - type: v_measure
            value: 72.78709391223538
          - type: v_measure_std
            value: 1.5927130767880417
          - type: main_score
            value: 72.78709391223538
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringS2S (default)
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringS2S
        metrics:
          - type: v_measure
            value: 66.80392174700211
          - type: v_measure_std
            value: 1.845756306548485
          - type: main_score
            value: 66.80392174700211
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB VideoRetrieval (default)
          revision: None
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: map_at_1
            value: 65.5
          - type: map_at_10
            value: 75.38
          - type: map_at_100
            value: 75.756
          - type: map_at_1000
            value: 75.75800000000001
          - type: map_at_3
            value: 73.8
          - type: map_at_5
            value: 74.895
          - type: mrr_at_1
            value: 65.5
          - type: mrr_at_10
            value: 75.38
          - type: mrr_at_100
            value: 75.756
          - type: mrr_at_1000
            value: 75.75800000000001
          - type: mrr_at_3
            value: 73.8
          - type: mrr_at_5
            value: 74.895
          - type: ndcg_at_1
            value: 65.5
          - type: ndcg_at_10
            value: 79.572
          - type: ndcg_at_100
            value: 81.17699999999999
          - type: ndcg_at_1000
            value: 81.227
          - type: ndcg_at_3
            value: 76.44999999999999
          - type: ndcg_at_5
            value: 78.404
          - type: precision_at_1
            value: 65.5
          - type: precision_at_10
            value: 9.24
          - type: precision_at_100
            value: 0.9939999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.033
          - type: precision_at_5
            value: 17.76
          - type: recall_at_1
            value: 65.5
          - type: recall_at_10
            value: 92.4
          - type: recall_at_100
            value: 99.4
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_3
            value: 84.1
          - type: recall_at_5
            value: 88.8
          - type: main_score
            value: 79.572
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Waimai (default)
          revision: None
          split: test
          type: C-MTEB/waimai-classification
        metrics:
          - type: accuracy
            value: 88.70000000000002
          - type: accuracy_stderr
            value: 1.1713240371477067
          - type: ap
            value: 73.95357766936226
          - type: ap_stderr
            value: 2.3258932220157638
          - type: f1
            value: 87.27541455081986
          - type: f1_stderr
            value: 1.185968184225313
          - type: main_score
            value: 88.70000000000002
        task:
          type: Classification
tags:
  - mteb

Yuan-embedding-1.0

Yuan-embedding-1.0 是专门为中文文本检索任务设计的嵌入模型。 在xiaobu模型结构(bert-large结构)基础上, 采用全新的数据集构建、生成与清洗方法, 结合二阶段微调实现Retrieval任务的精度领先(Hugging Face C-MTEB榜单 [1])。 其中, 正负例样本采用源2.0-M32(Yuan2.0-M32 [2])大模型进行生成。主要工作如下:

  • 在Hard negative sampling中,使用Rerank模型(bge-reranker-large [3])进行数据排序筛选

  • 通过(Yuan2.0-M32大模型)迭代生成新query、corpus

  • 采用MRL方法进行模型微调训练

Usage

pip install -U sentence-transformers==3.1.1

使用示例:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("IEIYuan/Yuan-embedding-1.0")
sentences = [
    "这是一个样例-1",
    "这是一个样例-2",
]
embeddings = model.encode(sentences)
similarities = model.similarity(embeddings, embeddings)
print(similarities)

Reference

  1. https://huggingface.co./spaces/mteb/leaderboard
  2. https://huggingface.co./IEITYuan/Yuan2-M32
  3. https://huggingface.co./BAAI/bge-reranker-large