Joelzhang commited on
Commit
3d1d382
·
1 Parent(s): 6954910

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -14
README.md CHANGED
@@ -4,9 +4,10 @@ language:
4
  license: apache-2.0
5
 
6
  tags:
7
- - bert
8
  - NLU
9
  - Sentiment
 
10
 
11
  inference: true
12
 
@@ -14,11 +15,41 @@ widget:
14
  - text: "今天心情不好"
15
 
16
  ---
17
- # Erlangshen-Roberta-330M-Semtiment, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
18
- We collect 8 sentiment datasets in the Chinese domain for finetune, with a total of 227347 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext)
19
 
20
- ## Usage
21
- ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  from transformers import BertForSequenceClassification
23
  from transformers import BertTokenizer
24
  import torch
@@ -30,17 +61,29 @@ text='今天心情不好'
30
 
31
  output=model(torch.tensor([tokenizer.encode(text)]))
32
  print(torch.nn.functional.softmax(output.logits,dim=-1))
33
-
34
  ```
35
- ## Scores on downstream chinese tasks
36
- | Model | ASAP-SENT | ASAP-ASPECT | ChnSentiCorp |
37
- | :--------: | :-----: | :----: | :-----: |
38
- | Erlangshen-Roberta-110M-Sentiment | 97.77 | 97.31 | 96.61 |
39
- | Erlangshen-Roberta-330M-Sentiment | 97.9 | 97.51 | 96.66 |
40
- | Erlangshen-MegatronBert-1.3B-Sentiment | 98.1 | 97.8 | 97 |
41
- ## Citation
42
- If you find the resource is useful, please cite the following website in your paper.
 
 
 
 
 
 
 
43
  ```
 
 
 
 
 
 
44
  @misc{Fengshenbang-LM,
45
  title={Fengshenbang-LM},
46
  author={IDEA-CCNL},
 
4
  license: apache-2.0
5
 
6
  tags:
7
+ - roberta
8
  - NLU
9
  - Sentiment
10
+ - Chinese
11
 
12
  inference: true
13
 
 
15
  - text: "今天心情不好"
16
 
17
  ---
18
+ # Erlangshen-Roberta-330M-Sentiment
 
19
 
20
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
21
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
22
+
23
+ ## 简介 Brief Introduction
24
+
25
+ 中文的RoBERTa-wwm-ext-large在数个情感分析任务微调后的版本
26
+
27
+ This is the fine-tuned version of the Chinese RoBERTa-wwm-ext-large model on several sentiment analysis datasets.
28
+
29
+ ## 模型分类 Model Taxonomy
30
+
31
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
32
+ | :----: | :----: | :----: | :----: | :----: | :----: |
33
+ | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | Roberta | 330M | Sentiment |
34
+
35
+ ## 模型信息 Model Information
36
+
37
+ 基于[chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large),我们在收集的8个中文领域的情感分析数据集,总计227347个样本上微调了一个Semtiment版本。
38
+
39
+ Based on [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large), we fine-tuned a sentiment analysis version on 8 Chinese sentiment analysis datasets, with totaling 227,347 samples.
40
+
41
+ ### 下游效果 Performance
42
+
43
+ | 模型 Model | ASAP-SENT | ASAP-ASPECT | ChnSentiCorp |
44
+ | :--------: | :-----: | :----: | :-----: |
45
+ | Erlangshen-Roberta-110M-Sentiment | 97.77 | 97.31 | 96.61 |
46
+ | Erlangshen-Roberta-330M-Sentiment | 97.9 | 97.51 | 96.66 |
47
+ | Erlangshen-MegatronBert-1.3B-Sentiment | 98.1 | 97.8 | 97 |
48
+
49
+
50
+ ## 使用 Usage
51
+
52
+ ``` python
53
  from transformers import BertForSequenceClassification
54
  from transformers import BertTokenizer
55
  import torch
 
61
 
62
  output=model(torch.tensor([tokenizer.encode(text)]))
63
  print(torch.nn.functional.softmax(output.logits,dim=-1))
 
64
  ```
65
+
66
+ ## 引用 Citation
67
+
68
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
69
+
70
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
71
+
72
+ ```text
73
+ @article{fengshenbang,
74
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
75
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
76
+ journal = {CoRR},
77
+ volume = {abs/2209.02970},
78
+ year = {2022}
79
+ }
80
  ```
81
+
82
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
83
+
84
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
85
+
86
+ ```text
87
  @misc{Fengshenbang-LM,
88
  title={Fengshenbang-LM},
89
  author={IDEA-CCNL},