Erlangshen-Roberta-330M-Sentiment
- Main Page:Fengshenbang
- Github: Fengshenbang-LM
简介 Brief Introduction
中文的RoBERTa-wwm-ext-large在数个情感分析任务微调后的版本
This is the fine-tuned version of the Chinese RoBERTa-wwm-ext-large model on several sentiment analysis datasets.
模型分类 Model Taxonomy
需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
---|---|---|---|---|---|
通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | Roberta | 330M | 中文-情感分析 Chinese-Sentiment |
模型信息 Model Information
基于chinese-roberta-wwm-ext-large,我们在收集的8个中文领域的情感分析数据集,总计227347个样本上微调了一个Semtiment版本。
Based on chinese-roberta-wwm-ext-large, we fine-tuned a sentiment analysis version on 8 Chinese sentiment analysis datasets, with totaling 227,347 samples.
下游效果 Performance
模型 Model | ASAP-SENT | ASAP-ASPECT | ChnSentiCorp |
---|---|---|---|
Erlangshen-Roberta-110M-Sentiment | 97.77 | 97.31 | 96.61 |
Erlangshen-Roberta-330M-Sentiment | 97.9 | 97.51 | 96.66 |
Erlangshen-MegatronBert-1.3B-Sentiment | 98.1 | 97.8 | 97 |
使用 Usage
from transformers import BertForSequenceClassification
from transformers import BertTokenizer
import torch
tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment')
model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment')
text='今天心情不好'
output=model(torch.tensor([tokenizer.encode(text)]))
print(torch.nn.functional.softmax(output.logits,dim=-1))
引用 Citation
如果您在您的工作中使用了我们的模型,可以引用我们的论文:
If you are using the resource for your work, please cite the our paper:
@article{fengshenbang,
author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
journal = {CoRR},
volume = {abs/2209.02970},
year = {2022}
}
也可以引用我们的网站:
You can also cite our website:
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2021},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
- Downloads last month
- 58,114