File size: 4,082 Bytes
1717970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: loubnabnl/smollm2-360M-8k-lc100k-mix1-ep2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: smollm2-360M-8k-lc100k-dpo-ultaf-ep2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/loubnabnl/huggingface/runs/3nedrmyg)
# smollm2-360M-8k-lc100k-dpo-ultaf-ep2

This model is a fine-tuned version of [loubnabnl/smollm2-360M-8k-lc100k-mix1-ep2](https://huggingface.co./loubnabnl/smollm2-360M-8k-lc100k-mix1-ep2) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6348
- Rewards/chosen: -0.0342
- Rewards/rejected: -0.3910
- Rewards/accuracies: 0.6190
- Rewards/margins: 0.3568
- Logps/rejected: -323.7198
- Logps/chosen: -375.6464
- Logits/rejected: -1.6969
- Logits/chosen: -1.6408

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.7098        | 0.2094 | 100  | 0.7162          | -0.0109        | -0.0675          | 0.5278             | 0.0566          | -323.0727      | -375.5997    | -1.6983         | -1.6387       |
| 0.6825        | 0.4187 | 200  | 0.6842          | -0.0010        | -0.1880          | 0.5794             | 0.1870          | -323.3139      | -375.5800    | -1.6938         | -1.6358       |
| 0.663         | 0.6281 | 300  | 0.6617          | 0.0225         | -0.2389          | 0.6032             | 0.2614          | -323.4156      | -375.5330    | -1.6893         | -1.6317       |
| 0.6547        | 0.8375 | 400  | 0.6591          | 0.0001         | -0.3516          | 0.6389             | 0.3517          | -323.6410      | -375.5778    | -1.6980         | -1.6414       |
| 0.6456        | 1.0468 | 500  | 0.6430          | 0.0133         | -0.3566          | 0.6667             | 0.3699          | -323.6510      | -375.5514    | -1.6931         | -1.6365       |
| 0.6054        | 1.2562 | 600  | 0.6423          | -0.0329        | -0.3895          | 0.6349             | 0.3566          | -323.7167      | -375.6438    | -1.6991         | -1.6431       |
| 0.6129        | 1.4656 | 700  | 0.6431          | -0.0449        | -0.4183          | 0.6349             | 0.3735          | -323.7745      | -375.6677    | -1.6979         | -1.6414       |
| 0.5972        | 1.6750 | 800  | 0.6384          | -0.0695        | -0.4139          | 0.6429             | 0.3444          | -323.7656      | -375.7169    | -1.6965         | -1.6399       |
| 0.6207        | 1.8843 | 900  | 0.6362          | -0.0627        | -0.4222          | 0.6786             | 0.3595          | -323.7822      | -375.7033    | -1.6976         | -1.6407       |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1