File size: 4,092 Bytes
e682e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: HuggingFaceTB/smollm2-135M-8k-lc100k-mix1-ep2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: smollm2-135M-8k-lc100k-dpo-ultaf-ep2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/loubnabnl/huggingface/runs/3el89rp6)
# smollm2-135M-8k-lc100k-dpo-ultaf-ep2

This model is a fine-tuned version of [HuggingFaceTB/smollm2-135M-8k-lc100k-mix1-ep2](https://huggingface.co./HuggingFaceTB/smollm2-135M-8k-lc100k-mix1-ep2) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6741
- Rewards/chosen: -0.0719
- Rewards/rejected: -0.3407
- Rewards/accuracies: 0.6151
- Rewards/margins: 0.2687
- Logps/rejected: -378.1583
- Logps/chosen: -443.6482
- Logits/rejected: 4.9520
- Logits/chosen: 4.6009

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.7296        | 0.2094 | 100  | 0.7357          | 0.0117         | -0.0252          | 0.5516             | 0.0369          | -377.5274      | -443.4810    | 5.1272          | 4.7554        |
| 0.7062        | 0.4187 | 200  | 0.6988          | -0.0251        | -0.0968          | 0.5675             | 0.0717          | -377.6706      | -443.5545    | 5.0879          | 4.7255        |
| 0.6782        | 0.6281 | 300  | 0.6943          | -0.0323        | -0.2031          | 0.5675             | 0.1708          | -377.8831      | -443.5688    | 5.0161          | 4.6621        |
| 0.6863        | 0.8375 | 400  | 0.6757          | -0.0882        | -0.2789          | 0.5992             | 0.1907          | -378.0348      | -443.6808    | 4.9992          | 4.6459        |
| 0.6836        | 1.0468 | 500  | 0.6708          | -0.0957        | -0.3325          | 0.6349             | 0.2368          | -378.1419      | -443.6958    | 4.9696          | 4.6170        |
| 0.6349        | 1.2562 | 600  | 0.6720          | -0.0539        | -0.3214          | 0.5992             | 0.2675          | -378.1197      | -443.6121    | 4.9707          | 4.6203        |
| 0.6427        | 1.4656 | 700  | 0.6796          | -0.0877        | -0.3456          | 0.6032             | 0.2579          | -378.1681      | -443.6797    | 4.9430          | 4.5920        |
| 0.6128        | 1.6750 | 800  | 0.6704          | -0.0604        | -0.3680          | 0.6071             | 0.3075          | -378.2128      | -443.6252    | 4.9689          | 4.6106        |
| 0.6474        | 1.8843 | 900  | 0.6692          | -0.0590        | -0.3703          | 0.6270             | 0.3113          | -378.2174      | -443.6223    | 4.9211          | 4.5737        |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1