metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
Forward-looking statements may appear throughout this report, including
without limitation, the following sections: “Management's Discussion and
Analysis,” “Risk Factors” and "Notes 4, 8 and 13 to the Consolidated
Financial Statements."
sentences:
- >-
How does a one-year adjustment in the 2023 expected retirement age for
U.S. plans affect income before income taxes?
- >-
Which sections of the report might contain forward-looking statements
according to the text?
- >-
What was the allowance for loan and lease losses at Bank of America as
of December 31, 2022?
- source_sentence: Interest income | $ | 267 | | | $ | 29 | | $ | 238 | | 821 | %
sentences:
- >-
What are the key risks and uncertainties mentioned that could impact the
validity of DaVita's forward-looking statements?
- >-
How did the interest income change in fiscal year 2023 compared to the
previous year?
- >-
What are some of the main competitive factors in the interactive
entertainment industry?
- source_sentence: >-
Veklury received U.S. Food and Drug Administration (FDA) and European
Commission (EC) approval to treat COVID-19 in patients with mild to severe
hepatic impairment and those with severe renal impairment, including those
on dialysis.
sentences:
- What significant regulatory approvals did Gilead's Veklury receive?
- >-
What type of information is included under the caption "Legal
Proceedings" in an Annual Report on Form 10-K?
- >-
What was the cash change related to changes in operating assets and
liabilities, including working capital, in 2022?
- source_sentence: >-
The net value of property, plant, and equipment for the consolidated group
increased from $12,028 million in 2022 to $12,680 million in 2023.
sentences:
- >-
What steps does the company plan to take next after discussing data with
regulators and key opinion leaders?
- >-
How does the company manage fluctuations in foreign currency exchange
rates?
- >-
What was the increase in property, plant, and equipment net value from
2022 to 2023 for the consolidated group?
- source_sentence: >-
The effective duration of our total AFS and HTM investments securities as
of December 31, 2023 is approximately 3.9 years.
sentences:
- >-
What are the effective durations of the total Available-for-Sale (AFS)
and Held-to-Maturity (HTM) investment securities as of December 31,
2023?
- >-
What was the net unit growth percentage for Hilton in the year ended
December 31, 2023?
- What does goodwill represent in accounting?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8485714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8885714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9214285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28285714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17771428571428569
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09214285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8485714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8885714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9214285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8274202252845575
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7969903628117911
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7998523047098398
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.72
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8442857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.72
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2814285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.72
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8442857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8213589464095679
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7896825396825394
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7926726035572866
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7214285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7214285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27952380952380956
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7214285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8190844047519252
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7888673469387758
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7921199469128796
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6971428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6971428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6971428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8054254319689889
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7729421768707481
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.776216648701894
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6614285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7985714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8442857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8814285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6614285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26619047619047614
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16885714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08814285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6614285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7985714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8442857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8814285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7728992637054746
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.737815759637188
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7417951294330247
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Hritikmore/bge-base-financial-matryoshka")
sentences = [
'The effective duration of our total AFS and HTM investments securities as of December 31, 2023 is approximately 3.9 years.',
'What are the effective durations of the total Available-for-Sale (AFS) and Held-to-Maturity (HTM) investment securities as of December 31, 2023?',
'What was the net unit growth percentage for Hilton in the year ended December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7286 |
cosine_accuracy@3 |
0.8486 |
cosine_accuracy@5 |
0.8886 |
cosine_accuracy@10 |
0.9214 |
cosine_precision@1 |
0.7286 |
cosine_precision@3 |
0.2829 |
cosine_precision@5 |
0.1777 |
cosine_precision@10 |
0.0921 |
cosine_recall@1 |
0.7286 |
cosine_recall@3 |
0.8486 |
cosine_recall@5 |
0.8886 |
cosine_recall@10 |
0.9214 |
cosine_ndcg@10 |
0.8274 |
cosine_mrr@10 |
0.797 |
cosine_map@100 |
0.7999 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.72 |
cosine_accuracy@3 |
0.8443 |
cosine_accuracy@5 |
0.8786 |
cosine_accuracy@10 |
0.92 |
cosine_precision@1 |
0.72 |
cosine_precision@3 |
0.2814 |
cosine_precision@5 |
0.1757 |
cosine_precision@10 |
0.092 |
cosine_recall@1 |
0.72 |
cosine_recall@3 |
0.8443 |
cosine_recall@5 |
0.8786 |
cosine_recall@10 |
0.92 |
cosine_ndcg@10 |
0.8214 |
cosine_mrr@10 |
0.7897 |
cosine_map@100 |
0.7927 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7214 |
cosine_accuracy@3 |
0.8386 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7214 |
cosine_precision@3 |
0.2795 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7214 |
cosine_recall@3 |
0.8386 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8191 |
cosine_mrr@10 |
0.7889 |
cosine_map@100 |
0.7921 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6971 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.6971 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.6971 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8054 |
cosine_mrr@10 |
0.7729 |
cosine_map@100 |
0.7762 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6614 |
cosine_accuracy@3 |
0.7986 |
cosine_accuracy@5 |
0.8443 |
cosine_accuracy@10 |
0.8814 |
cosine_precision@1 |
0.6614 |
cosine_precision@3 |
0.2662 |
cosine_precision@5 |
0.1689 |
cosine_precision@10 |
0.0881 |
cosine_recall@1 |
0.6614 |
cosine_recall@3 |
0.7986 |
cosine_recall@5 |
0.8443 |
cosine_recall@10 |
0.8814 |
cosine_ndcg@10 |
0.7729 |
cosine_mrr@10 |
0.7378 |
cosine_map@100 |
0.7418 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 45.87 tokens
- max: 272 tokens
|
- min: 2 tokens
- mean: 20.43 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
Significant judgment is required in evaluating our tax positions and during the ordinary course of business, there are many transactions and calculations for which the ultimate tax settlement is uncertain. As a result, we recognize the effect of this uncertainty on our tax attributes or taxes payable based on our estimates of the eventual outcome. |
Why might the company's tax settlements vary? |
OPSUMIT is used for the treatment of pediatric pulmonary arterial hypertension. |
What medical condition does OPSUMIT treat? |
Tangible equity ratios and tangible book value per share of common stock are non-GAAP financial measures. For more information on these ratios and corresponding reconciliations to GAAP financial measures, see Supplemental Financial Data and Non-GAAP Reconciliations. |
What is the tangible equity ratio considered according to standard financial measures? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 2
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 8
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 2
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2030 |
10 |
0.7168 |
- |
- |
- |
- |
- |
0.4061 |
20 |
0.3345 |
- |
- |
- |
- |
- |
0.6091 |
30 |
0.2234 |
- |
- |
- |
- |
- |
0.8122 |
40 |
0.2126 |
- |
- |
- |
- |
- |
0.9949 |
49 |
- |
0.7796 |
0.7844 |
0.7905 |
0.7293 |
0.7973 |
1.0152 |
50 |
0.2301 |
- |
- |
- |
- |
- |
1.2183 |
60 |
0.1595 |
- |
- |
- |
- |
- |
1.4213 |
70 |
0.1082 |
- |
- |
- |
- |
- |
1.6244 |
80 |
0.0911 |
- |
- |
- |
- |
- |
1.8274 |
90 |
0.1068 |
- |
- |
- |
- |
- |
1.9898 |
98 |
- |
0.7762 |
0.7921 |
0.7927 |
0.7418 |
0.7999 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}