HorcruxNo13's picture
Model save
61ee075
|
raw
history blame
3.44 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: vit-base-patch16-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7066666666666667
- name: Precision
type: precision
value: 0.5034113712374582
- name: Recall
type: recall
value: 0.7066666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5891
- Accuracy: 0.7067
- Precision: 0.5034
- Recall: 0.7067
- F1 Score: 0.5880
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| No log | 1.0 | 4 | 0.5970 | 0.725 | 0.5256 | 0.725 | 0.6094 |
| No log | 2.0 | 8 | 0.5990 | 0.7292 | 0.8028 | 0.7292 | 0.6191 |
| No log | 3.0 | 12 | 0.5648 | 0.725 | 0.5256 | 0.725 | 0.6094 |
| 0.6217 | 4.0 | 16 | 0.6035 | 0.7042 | 0.6625 | 0.7042 | 0.6709 |
| 0.6217 | 5.0 | 20 | 0.5560 | 0.7333 | 0.8050 | 0.7333 | 0.6286 |
| 0.6217 | 6.0 | 24 | 0.5656 | 0.7167 | 0.6184 | 0.7167 | 0.6194 |
| 0.6217 | 7.0 | 28 | 0.5552 | 0.7292 | 0.8028 | 0.7292 | 0.6191 |
| 0.5729 | 8.0 | 32 | 0.5532 | 0.7292 | 0.7126 | 0.7292 | 0.6263 |
| 0.5729 | 9.0 | 36 | 0.5634 | 0.7292 | 0.6863 | 0.7292 | 0.6453 |
| 0.5729 | 10.0 | 40 | 0.5589 | 0.7333 | 0.7009 | 0.7333 | 0.6536 |
| 0.5729 | 11.0 | 44 | 0.5676 | 0.7292 | 0.6848 | 0.7292 | 0.6612 |
| 0.5599 | 12.0 | 48 | 0.5655 | 0.7333 | 0.6952 | 0.7333 | 0.6688 |
| 0.5599 | 13.0 | 52 | 0.5692 | 0.7333 | 0.6954 | 0.7333 | 0.6816 |
| 0.5599 | 14.0 | 56 | 0.5746 | 0.725 | 0.6864 | 0.725 | 0.6863 |
| 0.5382 | 15.0 | 60 | 0.5752 | 0.7208 | 0.6832 | 0.7208 | 0.6864 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3