|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: vit-base-patch16-224 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7066666666666667 |
|
- name: Precision |
|
type: precision |
|
value: 0.5034113712374582 |
|
- name: Recall |
|
type: recall |
|
value: 0.7066666666666667 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5891 |
|
- Accuracy: 0.7067 |
|
- Precision: 0.5034 |
|
- Recall: 0.7067 |
|
- F1 Score: 0.5880 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| |
|
| No log | 1.0 | 4 | 0.5970 | 0.725 | 0.5256 | 0.725 | 0.6094 | |
|
| No log | 2.0 | 8 | 0.5990 | 0.7292 | 0.8028 | 0.7292 | 0.6191 | |
|
| No log | 3.0 | 12 | 0.5648 | 0.725 | 0.5256 | 0.725 | 0.6094 | |
|
| 0.6217 | 4.0 | 16 | 0.6035 | 0.7042 | 0.6625 | 0.7042 | 0.6709 | |
|
| 0.6217 | 5.0 | 20 | 0.5560 | 0.7333 | 0.8050 | 0.7333 | 0.6286 | |
|
| 0.6217 | 6.0 | 24 | 0.5656 | 0.7167 | 0.6184 | 0.7167 | 0.6194 | |
|
| 0.6217 | 7.0 | 28 | 0.5552 | 0.7292 | 0.8028 | 0.7292 | 0.6191 | |
|
| 0.5729 | 8.0 | 32 | 0.5532 | 0.7292 | 0.7126 | 0.7292 | 0.6263 | |
|
| 0.5729 | 9.0 | 36 | 0.5634 | 0.7292 | 0.6863 | 0.7292 | 0.6453 | |
|
| 0.5729 | 10.0 | 40 | 0.5589 | 0.7333 | 0.7009 | 0.7333 | 0.6536 | |
|
| 0.5729 | 11.0 | 44 | 0.5676 | 0.7292 | 0.6848 | 0.7292 | 0.6612 | |
|
| 0.5599 | 12.0 | 48 | 0.5655 | 0.7333 | 0.6952 | 0.7333 | 0.6688 | |
|
| 0.5599 | 13.0 | 52 | 0.5692 | 0.7333 | 0.6954 | 0.7333 | 0.6816 | |
|
| 0.5599 | 14.0 | 56 | 0.5746 | 0.725 | 0.6864 | 0.725 | 0.6863 | |
|
| 0.5382 | 15.0 | 60 | 0.5752 | 0.7208 | 0.6832 | 0.7208 | 0.6864 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|