HorcruxNo13's picture
Model save
5e6cd35
|
raw
history blame
3.44 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: vit-base-patch16-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7833333333333333
          - name: Precision
            type: precision
            value: 0.7701923076923076
          - name: Recall
            type: recall
            value: 0.7833333333333333

vit-base-patch16-224

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4772
  • Accuracy: 0.7833
  • Precision: 0.7702
  • Recall: 0.7833
  • F1 Score: 0.7559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.6010 0.7333 0.6725 0.7333 0.6280
No log 2.0 8 0.5552 0.7375 0.8067 0.7375 0.6302
No log 3.0 12 0.5450 0.7542 0.7598 0.7542 0.6782
0.576 4.0 16 0.5325 0.75 0.7707 0.75 0.6641
0.576 5.0 20 0.5234 0.75 0.7232 0.75 0.6900
0.576 6.0 24 0.5112 0.7625 0.7506 0.7625 0.7076
0.576 7.0 28 0.5082 0.7667 0.7503 0.7667 0.7221
0.4876 8.0 32 0.5067 0.7667 0.7466 0.7667 0.7288
0.4876 9.0 36 0.5091 0.7792 0.7623 0.7792 0.7528
0.4876 10.0 40 0.5023 0.7583 0.7393 0.7583 0.7045
0.4876 11.0 44 0.4911 0.7708 0.7507 0.7708 0.7435
0.4379 12.0 48 0.4921 0.7667 0.7487 0.7667 0.7513
0.4379 13.0 52 0.4906 0.7917 0.7792 0.7917 0.7680
0.4379 14.0 56 0.4919 0.7875 0.7731 0.7875 0.7645
0.4003 15.0 60 0.4929 0.7833 0.7678 0.7833 0.7587

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3