HorcruxNo13's picture
Model save
0418967
|
raw
history blame
4.85 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: vit-base-patch16-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8566666666666667
          - name: Precision
            type: precision
            value: 0.8522571872571872
          - name: Recall
            type: recall
            value: 0.8566666666666667

vit-base-patch16-224

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4410
  • Accuracy: 0.8567
  • Precision: 0.8523
  • Recall: 0.8567
  • F1 Score: 0.8517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.5841 0.7333 0.6770 0.7333 0.6479
No log 2.0 8 0.5727 0.7333 0.5378 0.7333 0.6205
No log 3.0 12 0.6089 0.7208 0.7222 0.7208 0.7215
No log 4.0 16 0.5332 0.7458 0.7205 0.7458 0.6727
No log 5.0 20 0.5314 0.7625 0.7410 0.7625 0.7416
No log 6.0 24 0.5284 0.7583 0.7486 0.7583 0.6959
No log 7.0 28 0.5220 0.775 0.7700 0.775 0.7286
0.5564 8.0 32 0.5204 0.7833 0.7740 0.7833 0.7481
0.5564 9.0 36 0.5044 0.7708 0.7616 0.7708 0.7650
0.5564 10.0 40 0.4845 0.8125 0.8051 0.8125 0.7941
0.5564 11.0 44 0.4921 0.7833 0.7726 0.7833 0.7757
0.5564 12.0 48 0.4792 0.8167 0.8098 0.8167 0.7996
0.5564 13.0 52 0.4825 0.8 0.7889 0.8 0.7901
0.5564 14.0 56 0.4987 0.8083 0.7989 0.8083 0.8002
0.3176 15.0 60 0.4970 0.8208 0.8144 0.8208 0.8050
0.3176 16.0 64 0.5076 0.8083 0.7983 0.8083 0.7923
0.3176 17.0 68 0.5227 0.8083 0.7979 0.8083 0.7941
0.3176 18.0 72 0.5132 0.8042 0.7928 0.8042 0.7905
0.3176 19.0 76 0.5081 0.8167 0.8087 0.8167 0.8014
0.3176 20.0 80 0.5140 0.8292 0.8220 0.8292 0.8187
0.3176 21.0 84 0.5392 0.8125 0.8032 0.8125 0.7977
0.3176 22.0 88 0.5175 0.7958 0.7829 0.7958 0.7815
0.1778 23.0 92 0.5109 0.8125 0.8032 0.8125 0.7977
0.1778 24.0 96 0.4961 0.8292 0.8217 0.8292 0.8213
0.1778 25.0 100 0.5251 0.8083 0.7979 0.8083 0.7941
0.1778 26.0 104 0.5192 0.8167 0.8075 0.8167 0.8046
0.1778 27.0 108 0.5030 0.8333 0.8274 0.8333 0.8286
0.1778 28.0 112 0.5031 0.8375 0.8310 0.8375 0.8300
0.1778 29.0 116 0.5164 0.8208 0.8127 0.8208 0.8083
0.1109 30.0 120 0.5192 0.8208 0.8127 0.8208 0.8083

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3